Dondrup, Christian
Socially Pertinent Robots in Gerontological Healthcare
Alameda-Pineda, Xavier, Addlesee, Angus, García, Daniel Hernández, Reinke, Chris, Arias, Soraya, Arrigoni, Federica, Auternaud, Alex, Blavette, Lauriane, Beyan, Cigdem, Camara, Luis Gomez, Cohen, Ohad, Conti, Alessandro, Dacunha, Sébastien, Dondrup, Christian, Ellinson, Yoav, Ferro, Francesco, Gannot, Sharon, Gras, Florian, Gunson, Nancie, Horaud, Radu, D'Incà, Moreno, Kimouche, Imad, Lemaignan, Séverin, Lemon, Oliver, Liotard, Cyril, Marchionni, Luca, Moradi, Mordehay, Pajdla, Tomas, Pino, Maribel, Polic, Michal, Py, Matthieu, Rado, Ariel, Ren, Bin, Ricci, Elisa, Rigaud, Anne-Sophie, Rota, Paolo, Romeo, Marta, Sebe, Nicu, Sieińska, Weronika, Tandeitnik, Pinchas, Tonini, Francesco, Turro, Nicolas, Wintz, Timothée, Yu, Yanchao
Despite the many recent achievements in developing and deploying social robotics, there are still many underexplored environments and applications for which systematic evaluation of such systems by end-users is necessary. While several robotic platforms have been used in gerontological healthcare, the question of whether or not a social interactive robot with multi-modal conversational capabilities will be useful and accepted in real-life facilities is yet to be answered. This paper is an attempt to partially answer this question, via two waves of experiments with patients and companions in a day-care gerontological facility in Paris with a full-sized humanoid robot endowed with social and conversational interaction capabilities. The software architecture, developed during the H2020 SPRING project, together with the experimental protocol, allowed us to evaluate the acceptability (AES) and usability (SUS) with more than 60 end-users. Overall, the users are receptive to this technology, especially when the robot perception and action skills are robust to environmental clutter and flexible to handle a plethora of different interactions.
Come Closer: The Effects of Robot Personality on Human Proxemics Behaviours
Moujahid, Meriam, Robb, David A., Dondrup, Christian, Hastie, Helen
Social Robots in human environments need to be able to reason about their physical surroundings while interacting with people. Furthermore, human proxemics behaviours around robots can indicate how people perceive the robots and can inform robot personality and interaction design. Here, we introduce Charlie, a situated robot receptionist that can interact with people using verbal and non-verbal communication in a dynamic environment, where users might enter or leave the scene at any time. The robot receptionist is stationary and cannot navigate. Therefore, people have full control over their personal space as they are the ones approaching the robot. We investigated the influence of different apparent robot personalities on the proxemics behaviours of the humans. The results indicate that different types of robot personalities, specifically introversion and extroversion, can influence human proxemics behaviours. Participants maintained shorter distances with the introvert robot receptionist, compared to the extrovert robot. Interestingly, we observed that human-robot proxemics were not the same as typical human-human interpersonal distances, as defined in the literature. We therefore propose new proxemics zones for human-robot interaction.
Working with Trouble and Failures in Conversation between Humans and Robots (WTF 2023) & Is CUI Design Ready Yet?
Förster, Frank, Romeo, Marta, Holthaus, Patrick, Trigo, Maria Jose Galvez, Fischer, Joel E., Nesset, Birthe, Dondrup, Christian, Murad, Christine, Munteanu, Cosmin, Cowan, Benjamin R., Clark, Leigh, Porcheron, Martin, Candello, Heloisa, Langevin, Raina
Workshop proceedings of two co-located workshops "Working with Troubles and Failures in Conversation with Humans and Robots" (WTF 2023) and "Is CUI Design Ready Yet?", both of which were part of the ACM conference on conversational user interfaces 2023. WTF 23 aimed at bringing together researchers from human-robot interaction, dialogue systems, human-computer interaction, and conversation analysis. Despite all progress, robotic speech interfaces continue to be brittle in a number of ways and the experience of failure of such interfaces is commonplace amongst roboticists. However, the technical literature is positively skewed toward their good performance. The workshop aims to provide a platform for discussing communicative troubles and failures in human-robot interactions and related failures in non-robotic speech interfaces. Aims include a scrupulous investigation into communicative failures, to begin working on a taxonomy of such failures, and enable a preliminary discussion on possible mitigating strategies. Workshop website: https://sites.google.com/view/wtf2023/overview Is CUI Design Ready Yet? As CUIs become more prevalent in both academic research and the commercial market, it becomes more essential to design usable and adoptable CUIs. While research has been growing on the methods for designing CUIs for commercial use, there has been little discussion on the overall community practice of developing design resources to aid in practical CUI design. The aim of this workshop, therefore, is to bring the CUI community together to discuss the current practices for developing tools and resources for practical CUI design, the adoption (or non-adoption) of these tools and resources, and how these resources are utilized in the training and education of new CUI designers entering the field. Workshop website: https://speech-interaction.org/cui2023_design_workshop/index.html
SimpleMTOD: A Simple Language Model for Multimodal Task-Oriented Dialogue with Symbolic Scene Representation
Hemanthage, Bhathiya, Dondrup, Christian, Bartie, Phil, Lemon, Oliver
SimpleMTOD is a simple language model which recasts several sub-tasks in multimodal task-oriented dialogues as sequence prediction tasks. SimpleMTOD is built on a large-scale transformer-based auto-regressive architecture, which has already proven to be successful in uni-modal task-oriented dialogues, and effectively leverages transfer learning from pre-trained GPT-2. In-order to capture the semantics of visual scenes, we introduce both local and de-localized tokens for objects within a scene. De-localized tokens represent the type of an object rather than the specific object itself and so possess a consistent meaning across the dataset. SimpleMTOD achieves a state-of-the-art BLEU score (0.327) in the Response Generation sub-task of the SIMMC 2.0 test-std dataset while performing on par in other multimodal sub-tasks: Disambiguation, Coreference Resolution, and Dialog State Tracking. This is despite taking a minimalist approach for extracting visual (and non-visual) information. In addition the model does not rely on task-specific architectural changes such as classification heads.
Proceedings of the AI-HRI Symposium at AAAI-FSS 2020
Bagchi, Shelly, Wilson, Jason R., Ahmad, Muneeb I., Dondrup, Christian, Han, Zhao, Hart, Justin W., Leonetti, Matteo, Lohan, Katrin, Mead, Ross, Senft, Emmanuel, Sinapov, Jivko, Zimmerman, Megan L.
The Artificial Intelligence (AI) for Human-Robot Interaction (HRI) Symposium has been a successful venue of discussion and collaboration since 2014. In that time, the related topic of trust in robotics has been rapidly growing, with major research efforts at universities and laboratories across the world. Indeed, many of the past participants in AI-HRI have been or are now involved with research into trust in HRI. While trust has no consensus definition, it is regularly associated with predictability, reliability, inciting confidence, and meeting expectations. Furthermore, it is generally believed that trust is crucial for adoption of both AI and robotics, particularly when transitioning technologies from the lab to industrial, social, and consumer applications. However, how does trust apply to the specific situations we encounter in the AI-HRI sphere? Is the notion of trust in AI the same as that in HRI? We see a growing need for research that lives directly at the intersection of AI and HRI that is serviced by this symposium. Over the course of the two-day meeting, we propose to create a collaborative forum for discussion of current efforts in trust for AI-HRI, with a sub-session focused on the related topic of explainable AI (XAI) for HRI.
MuMMER: Socially Intelligent Human-Robot Interaction in Public Spaces
Foster, Mary Ellen, Craenen, Bart, Deshmukh, Amol, Lemon, Oliver, Bastianelli, Emanuele, Dondrup, Christian, Papaioannou, Ioannis, Vanzo, Andrea, Odobez, Jean-Marc, Canévet, Olivier, Cao, Yuanzhouhan, He, Weipeng, Martínez-González, Angel, Motlicek, Petr, Siegfried, Rémy, Alami, Rachid, Belhassein, Kathleen, Buisan, Guilhem, Clodic, Aurélie, Mayima, Amandine, Sallami, Yoan, Sarthou, Guillaume, Singamaneni, Phani-Teja, Waldhart, Jules, Mazel, Alexandre, Caniot, Maxime, Niemelä, Marketta, Heikkilä, Päivi, Lammi, Hanna, Tammela, Antti
In the EU-funded MuMMER project, we have developed a social robot designed to interact naturally and flexibly with users in public spaces such as a shopping mall. We present the latest version of the robot system developed during the project. This system encompasses audio-visual sensing, social signal processing, conversational interaction, perspective taking, geometric reasoning, and motion planning. It successfully combines all these components in an overarching framework using the Robot Operating System (ROS) and has been deployed to a shopping mall in Finland interacting with customers. In this paper, we describe the system components, their interplay, and the resulting robot behaviours and scenarios provided at the shopping mall.
Petri Net Machines for Human-Agent Interaction
Dondrup, Christian, Papaioannou, Ioannis, Lemon, Oliver
Smart speakers and robots become ever more prevalent in our daily lives. These agents are able to execute a wide range of tasks and actions and, therefore, need systems to control their execution. Current state-of-the-art such as (deep) reinforcement learning, however, requires vast amounts of data for training which is often hard to come by when interacting with humans. To overcome this issue, most systems still rely on Finite State Machines. We introduce Petri Net Machines which present a formal definition for state machines based on Petri Nets that are able to execute concurrent actions reliably, execute and interleave several plans at the same time, and provide an easy to use modelling language. We show their workings based on the example of Human-Robot Interaction in a shopping mall.