Donati, Elisa
Event-Driven Implementation of a Physical Reservoir Computing Framework for superficial EMG-based Gesture Recognition
Ding, Yuqi, Donati, Elisa, Li, Haobo, Heidari, Hadi
Wearable health devices have a strong demand in real-time biomedical signal processing. However traditional methods often require data transmission to centralized processing unit with substantial computational resources after collecting it from edge devices. Neuromorphic computing is an emerging field that seeks to design specialized hardware for computing systems inspired by the structure, function, and dynamics of the human brain, offering significant advantages in latency and power consumption. This paper explores a novel neuromorphic implementation approach for gesture recognition by extracting spatiotemporal spiking information from surface electromyography (sEMG) data in an event-driven manner. At the same time, the network was designed by implementing a simple-structured and hardware-friendly Physical Reservoir Computing (PRC) framework called Rotating Neuron Reservoir (RNR) within the domain of Spiking neural network (SNN). The spiking RNR (sRNR) is promising to pipeline an innovative solution to compact embedded wearable systems, enabling low-latency, real-time processing directly at the sensor level. The proposed system was validated by an open-access large-scale sEMG database and achieved an average classification accuracy of 74.6\% and 80.3\% using a classical machine learning classifier and a delta learning rule algorithm respectively. While the delta learning rule could be fully spiking and implementable on neuromorphic chips, the proposed gesture recognition system demonstrates the potential for near-sensor low-latency processing.
Intramuscular High-Density Micro-Electrode Arrays Enable High-Precision Decoding and Mapping of Spinal Motor Neurons to Reveal Hand Control
Grison, Agnese, Pereda, Jaime Ibanez, Muceli, Silvia, Kundu, Aritra, Baracat, Farah, Indiveri, Giacomo, Donati, Elisa, Farina, Dario
Decoding nervous system activity is a key challenge in neuroscience and neural interfacing. In this study, we propose a novel neural decoding system that enables unprecedented large-scale sampling of muscle activity. Using micro-electrode arrays with more than 100 channels embedded within the forearm muscles, we recorded high-density signals that captured multi-unit motor neuron activity. This extensive sampling was complemented by advanced methods for neural decomposition, analysis, and classification, allowing us to accurately detect and interpret the spiking activity of spinal motor neurons that innervate hand muscles. We evaluated this system in two healthy participants, each implanted with three electromyogram (EMG) micro-electrode arrays (comprising 40 electrodes each) in the forearm. These arrays recorded muscle activity during both single- and multi-digit isometric contractions. For the first time under controlled conditions, we demonstrate that multi-digit tasks elicit unique patterns of motor neuron recruitment specific to each task, rather than employing combinations of recruitment patterns from single-digit tasks. This observation led us to hypothesize that hand tasks could be classified with high precision based on the decoded neural activity. We achieved perfect classification accuracy (100%) across 12 distinct single- and multi-digit tasks, and consistently high accuracy (>96\%) across all conditions and subjects, for up to 16 task classes. These results significantly outperformed conventional EMG classification methods. The exceptional performance of this system paves the way for developing advanced neural interfaces based on invasive high-density EMG technology. This innovation could greatly enhance human-computer interaction and lead to substantial improvements in assistive technologies, offering new possibilities for restoring motor function in clinical applications.
A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures
Quintana, Fernando M., Maryada, null, Galindo, Pedro L., Donati, Elisa, Indiveri, Giacomo, Perez-Peña, Fernando
Developing dedicated neuromorphic computing platforms optimized for embedded or edge-computing applications requires time-consuming design, fabrication, and deployment of full-custom neuromorphic processors. To ensure that initial prototyping efforts, exploring the properties of different network architectures and parameter settings, lead to realistic results it is important to use simulation frameworks that match as best as possible the properties of the final hardware. This is particularly challenging for neuromorphic hardware platforms made using mixed-signal analog/digital circuits, due to the variability and noise sensitivity of their components. In this paper, we address this challenge by developing a software spiking neural network simulator explicitly designed to account for the properties of mixed-signal neuromorphic circuits, including device mismatch variability. The simulator, called ARCANA (A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures), is designed to reproduce the dynamics of mixed-signal synapse and neuron electronic circuits with autogradient differentiation for parameter optimization and GPU acceleration. We demonstrate the effectiveness of this approach by matching software simulation results with measurements made from an existing neuromorphic processor. We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software, once deployed in hardware. This framework enables the development and innovation of new learning rules and processing architectures in neuromorphic embedded systems. Keywords: SNN, DPI, neuromorphic, PyTorch, DYNAP-SE 1. Introduction Mixed-signal neuromorphic circuits emulate the neural and synaptic dynamics observed in real neural systems, reproducing features such as limited precision, heterogeneity, and high
Long-term stable Electromyography classification using Canonical Correlation Analysis
Donati, Elisa, Benatti, Simone, Ceolini, Enea, Indiveri, Giacomo
Discrimination of hand gestures based on the decoding of surface electromyography (sEMG) signals is a well-establish approach for controlling prosthetic devices and for Human-Machine Interfaces (HMI). However, despite the promising results achieved by this approach in well-controlled experimental conditions, its deployment in long-term real-world application scenarios is still hindered by several challenges. One of the most critical challenges is maintaining high EMG data classification performance across multiple days without retraining the decoding system. The drop in performance is mostly due to the high EMG variability caused by electrodes shift, muscle artifacts, fatigue, user adaptation, or skin-electrode interfacing issues. Here we propose a novel statistical method based on canonical correlation analysis (CCA) that stabilizes EMG classification performance across multiple days for long-term control of prosthetic devices. We show how CCA can dramatically decrease the performance drop of standard classifiers observed across days, by maximizing the correlation among multiple-day acquisition data sets. Our results show how the performance of a classifier trained on EMG data acquired only of the first day of the experiment maintains 90% relative accuracy across multiple days, compensating for the EMG data variability that occurs over long-term periods, using the CCA transformation on data obtained from a small number of gestures. This approach eliminates the need for large data sets and multiple or periodic training sessions, which currently hamper the usability of conventional pattern recognition based approaches