Goto

Collaborating Authors

 Dominik Linzner


Cluster Variational Approximations for Structure Learning of Continuous-Time Bayesian Networks from Incomplete Data

Neural Information Processing Systems

Continuous-time Bayesian networks (CTBNs) constitute a general and powerful framework for modeling continuous-time stochastic processes on networks. This makes them particularly attractive for learning the directed structures among interacting entities. However, if the available data is incomplete, one needs to simulate the prohibitively complex CTBN dynamics. Existing approximation techniques, such as sampling and low-order variational methods, either scale unfavorably in system size, or are unsatisfactory in terms of accuracy. Inspired by recent advances in statistical physics, we present a new approximation scheme based on cluster variational methods that significantly improves upon existing variational approximations. We can analytically marginalize the parameters of the approximate CTBN, as these are of secondary importance for structure learning. This recovers a scalable scheme for direct structure learning from incomplete and noisy time-series data. Our approach outperforms existing methods in terms of scalability.


Scalable Structure Learning of Continuous-Time Bayesian Networks from Incomplete Data

Neural Information Processing Systems

Continuous-time Bayesian Networks (CTBNs) represent a compact yet powerful framework for understanding multivariate time-series data. Given complete data, parameters and structure can be estimated efficiently in closed-form. However, if data is incomplete, the latent states of the CTBN have to be estimated by laboriously simulating the intractable dynamics of the assumed CTBN. This is a problem, especially for structure learning tasks, where this has to be done for each element of a super-exponentially growing set of possible structures. In order to circumvent this notorious bottleneck, we develop a novel gradient-based approach to structure learning. Instead of sampling and scoring all possible structures individually, we assume the generator of the CTBN to be composed as a mixture of generators stemming from different structures. In this framework, structure learning can be performed via a gradient-based optimization of mixture weights. We combine this approach with a new variational method that allows for a closed-form calculation of this mixture marginal likelihood. We show the scalability of our method by learning structures of previously inaccessible sizes from synthetic and real-world data.


Cluster Variational Approximations for Structure Learning of Continuous-Time Bayesian Networks from Incomplete Data

Neural Information Processing Systems

Continuous-time Bayesian networks (CTBNs) constitute a general and powerful framework for modeling continuous-time stochastic processes on networks. This makes them particularly attractive for learning the directed structures among interacting entities. However, if the available data is incomplete, one needs to simulate the prohibitively complex CTBN dynamics. Existing approximation techniques, such as sampling and low-order variational methods, either scale unfavorably in system size, or are unsatisfactory in terms of accuracy. Inspired by recent advances in statistical physics, we present a new approximation scheme based on cluster variational methods that significantly improves upon existing variational approximations. We can analytically marginalize the parameters of the approximate CTBN, as these are of secondary importance for structure learning. This recovers a scalable scheme for direct structure learning from incomplete and noisy time-series data. Our approach outperforms existing methods in terms of scalability.


Scalable Structure Learning of Continuous-Time Bayesian Networks from Incomplete Data

Neural Information Processing Systems

Continuous-time Bayesian Networks (CTBNs) represent a compact yet powerful framework for understanding multivariate time-series data. Given complete data, parameters and structure can be estimated efficiently in closed-form. However, if data is incomplete, the latent states of the CTBN have to be estimated by laboriously simulating the intractable dynamics of the assumed CTBN. This is a problem, especially for structure learning tasks, where this has to be done for each element of a super-exponentially growing set of possible structures. In order to circumvent this notorious bottleneck, we develop a novel gradient-based approach to structure learning. Instead of sampling and scoring all possible structures individually, we assume the generator of the CTBN to be composed as a mixture of generators stemming from different structures. In this framework, structure learning can be performed via a gradient-based optimization of mixture weights. We combine this approach with a new variational method that allows for a closed-form calculation of this mixture marginal likelihood. We show the scalability of our method by learning structures of previously inaccessible sizes from synthetic and real-world data.