Goto

Collaborating Authors

 Dominik Janzing


Avoiding Discrimination through Causal Reasoning

Neural Information Processing Systems

Recent work on fairness in machine learning has focused on various statistical discrimination criteria and how they trade off. Most of these criteria are observational: They depend only on the joint distribution of predictor, protected attribute, features, and outcome. While convenient to work with, observational criteria have severe inherent limitations that prevent them from resolving matters of fairness conclusively. Going beyond observational criteria, we frame the problem of discrimination based on protected attributes in the language of causal reasoning. This viewpoint shifts attention from "What is the right fairness criterion?" to "What do we want to assume about our model of the causal data generating process?" Through the lens of causality, we make several contributions. First, we crisply articulate why and when observational criteria fail, thus formalizing what was before a matter of opinion. Second, our approach exposes previously ignored subtleties and why they are fundamental to the problem. Finally, we put forward natural causal non-discrimination criteria and develop algorithms that satisfy them.



Causal Regularization

Neural Information Processing Systems

We argue that regularizing terms in standard regression methods not only help against overfitting finite data, but sometimes also help in getting better causal models. We first consider a multi-dimensional variable linearly influencing a target variable with some multi-dimensional unobserved common cause, where the confounding effect can be decreased by keeping the penalizing term in Ridge and Lasso regression even in the population limit. The reason is a close analogy between overfitting and confounding observed for our toy model. In the case of overfitting, we can choose regularization constants via cross validation, but here we choose the regularization constant by first estimating the strength of confounding, which yielded reasonable results for simulated and real data. Further, we show a'causal generalization bound' which states (subject to our particular model of confounding) that the error made by interpreting any non-linear regression as causal model can be bounded from above whenever functions are taken from a not too rich class.


Avoiding Discrimination through Causal Reasoning

Neural Information Processing Systems

Recent work on fairness in machine learning has focused on various statistical discrimination criteria and how they trade off. Most of these criteria are observational: They depend only on the joint distribution of predictor, protected attribute, features, and outcome. While convenient to work with, observational criteria have severe inherent limitations that prevent them from resolving matters of fairness conclusively. Going beyond observational criteria, we frame the problem of discrimination based on protected attributes in the language of causal reasoning. This viewpoint shifts attention from "What is the right fairness criterion?" to "What do we want to assume about our model of the causal data generating process?" Through the lens of causality, we make several contributions. First, we crisply articulate why and when observational criteria fail, thus formalizing what was before a matter of opinion. Second, our approach exposes previously ignored subtleties and why they are fundamental to the problem. Finally, we put forward natural causal non-discrimination criteria and develop algorithms that satisfy them.