Goto

Collaborating Authors

 Dolin, Pavel


ActionReasoningBench: Reasoning about Actions with and without Ramification Constraints

arXiv.org Artificial Intelligence

Reasoning about actions and change (RAC) has historically driven the development of many early AI challenges, such as the frame problem, and many AI disciplines, including non-monotonic and commonsense reasoning. The role of RAC remains important even now, particularly for tasks involving dynamic environments, interactive scenarios, and commonsense reasoning. Despite the progress of Large Language Models (LLMs) in various AI domains, their performance on RAC is underexplored. To address this gap, we introduce a new benchmark, ActionReasoningBench, encompassing 13 domains and rigorously evaluating LLMs across eight different areas of RAC. These include - Object Tracking, Fluent Tracking, State Tracking, Action Executability, Effects of Actions, Numerical RAC, Hallucination Detection, and Composite Questions. Furthermore, we also investigate the indirect effect of actions due to ramification constraints for every domain. Finally, we evaluate our benchmark using open-sourced and commercial state-of-the-art LLMs, including GPT-4o, Gemini-1.0-Pro, Llama2-7b-chat, Llama2-13b-chat, Llama3-8b-instruct, Gemma-2b-instruct, and Gemma-7b-instruct. Our findings indicate that these models face significant challenges across all categories included in our benchmark.


The Art of Defending: A Systematic Evaluation and Analysis of LLM Defense Strategies on Safety and Over-Defensiveness

arXiv.org Artificial Intelligence

As Large Language Models (LLMs) play an increasingly pivotal role in natural language processing applications, their safety concerns become critical areas of NLP research. This paper presents Safety and Over-Defensiveness Evaluation (SODE) benchmark: a collection of diverse safe and unsafe prompts with carefully designed evaluation methods that facilitate systematic evaluation, comparison, and analysis over 'safety' and 'over-defensiveness.' With SODE, we study a variety of LLM defense strategies over multiple state-of-the-art LLMs, which reveals several interesting and important findings, such as (a) the widely popular 'self-checking' techniques indeed improve the safety against unsafe inputs, but this comes at the cost of extreme over-defensiveness on the safe inputs, (b) providing a safety instruction along with in-context exemplars (of both safe and unsafe inputs) consistently improves safety and also mitigates undue over-defensiveness of the models, (c) providing contextual knowledge easily breaks the safety guardrails and makes the models more vulnerable to generating unsafe responses. Overall, our work reveals numerous such critical findings that we believe will pave the way and facilitate further research in improving the safety of LLMs.