Goto

Collaborating Authors

 Dolev, Eden


Efficient Large-Scale Visual Representation Learning And Evaluation

arXiv.org Artificial Intelligence

Efficiently learning visual representations of items is vital for large-scale recommendations. In this article we compare several pretrained efficient backbone architectures, both in the convolutional neural network (CNN) and in the vision transformer (ViT) family. We describe challenges in e-commerce vision applications at scale and highlight methods to efficiently train, evaluate, and serve visual representations. We present ablation studies evaluating visual representations in several downstream tasks. To this end, we present a novel multilingual text-to-image generative offline evaluation method for visually similar recommendation systems. Finally, we include online results from deployed machine learning systems in production on a large scale e-commerce platform.


adSformers: Personalization from Short-Term Sequences and Diversity of Representations in Etsy Ads

arXiv.org Artificial Intelligence

In this article, we present a general approach to personalizing ads through encoding and learning from variable-length sequences of recent user actions and diverse representations. To this end we introduce a three-component module called the adSformer diversifiable personalization module (ADPM) that learns a dynamic user representation. We illustrate the module's effectiveness and flexibility by personalizing the Click-Through Rate (CTR) and Post-Click Conversion Rate (PCCVR) models used in sponsored search. The first component of the ADPM, the adSformer encoder, includes a novel adSformer block which learns the most salient sequence signals. ADPM's second component enriches the learned signal through visual, multimodal, and other pretrained representations. Lastly, the third ADPM "learned on the fly" component further diversifies the signal encoded in the dynamic user representation. The ADPM-personalized CTR and PCCVR models, henceforth referred to as adSformer CTR and adSformer PCCVR, outperform the CTR and PCCVR production baselines by $+2.66\%$ and $+2.42\%$, respectively, in offline Area Under the Receiver Operating Characteristic Curve (ROC-AUC). Following the robust online gains in A/B tests, Etsy Ads deployed the ADPM-personalized sponsored search system to $100\%$ of traffic as of February 2023.


Learning to Solve Combinatorial Optimization Problems on Real-World Graphs in Linear Time

arXiv.org Machine Learning

Combinatorial optimization algorithms for graph problems are usually designed afresh for each new problem with careful attention by an expert to the problem structure. In this work, we develop a new framework to solve any combinatorial optimization problem over graphs that can be formulated as a single player game defined by states, actions, and rewards, including minimum spanning tree, shortest paths, traveling salesman problem, and vehicle routing problem, without expert knowledge. Our method trains a graph neural network using reinforcement learning on an unlabeled training set of graphs. The trained network then outputs approximate solutions to new graph instances in linear running time. In contrast, previous approximation algorithms or heuristics tailored to NP-hard problems on graphs generally have at least quadratic running time. We demonstrate the applicability of our approach on both polynomial and NP-hard problems with optimality gaps close to 1, and show that our method is able to generalize well: (i) from training on small graphs to testing on large graphs; (ii) from training on random graphs of one type to testing on random graphs of another type; and (iii) from training on random graphs to running on real world graphs.