Goto

Collaborating Authors

 Doherty, Michael


Reinforcement Learning with Graph Attention for Routing and Wavelength Assignment with Lightpath Reuse

arXiv.org Artificial Intelligence

Many works have investigated reinforcement learning (RL) for routing and spectrum assignment on flex-grid networks but only one work to date has examined RL for fixed-grid with flex-rate transponders, despite production systems using this paradigm. Flex-rate transponders allow existing lightpaths to accommodate new services, a task we term routing and wavelength assignment with lightpath reuse (RWA-LR). We re-examine this problem and present a thorough benchmarking of heuristic algorithms for RWA-LR, which are shown to have 6% increased throughput when candidate paths are ordered by number of hops, rather than total length. We train an RL agent for RWA-LR with graph attention networks for the policy and value functions to exploit the graph-structured data. We provide details of our methodology and open source all of our code for reproduction. We outperform the previous state-of-the-art RL approach by 2.5% (17.4 Tbps mean additional throughput) and the best heuristic by 1.2% (8.5 Tbps mean additional throughput). This marginal gain highlights the difficulty in learning effective RL policies on long horizon resource allocation tasks.


Reinforcement Learning for Dynamic Resource Allocation in Optical Networks: Hype or Hope?

arXiv.org Artificial Intelligence

The application of reinforcement learning (RL) to dynamic resource allocation in optical networks has been the focus of intense research activity in recent years, with almost 100 peer-reviewed papers. We present a review of progress in the field, and identify significant gaps in benchmarking practices and reproducibility. To determine the strongest benchmark algorithms, we systematically evaluate several heuristics across diverse network topologies. We find that path count and sort criteria for path selection significantly affect the benchmark performance. We meticulously recreate the problems from five landmark papers and apply the improved benchmarks. Our comparisons demonstrate that simple heuristics consistently match or outperform the published RL solutions, often with an order of magnitude lower blocking probability. Furthermore, we present empirical lower bounds on network blocking using a novel defragmentation-based method, revealing that potential improvements over the benchmark heuristics are limited to 19--36\% increased traffic load for the same blocking performance in our examples. We make our simulation framework and results publicly available to promote reproducible research and standardized evaluation https://doi.org/10.5281/zenodo.12594495.