Not enough data to create a plot.
Try a different view from the menu above.
Doermann, David
YOLOv12: Attention-Centric Real-Time Object Detectors
Tian, Yunjie, Ye, Qixiang, Doermann, David
Enhancing the network architecture of the YOLO framework has been crucial for a long time, but has focused on CNN-based improvements despite the proven superiority of attention mechanisms in modeling capabilities. This is because attention-based models cannot match the speed of CNN-based models. This paper proposes an attention-centric YOLO framework, namely YOLOv12, that matches the speed of previous CNN-based ones while harnessing the performance benefits of attention mechanisms. YOLOv12 surpasses all popular real-time object detectors in accuracy with competitive speed. For example, YOLOv12-N achieves 40.6% mAP with an inference latency of 1.64 ms on a T4 GPU, outperforming advanced YOLOv10-N / YOLOv11-N by 2.1%/1.2% mAP with a comparable speed. This advantage extends to other model scales. YOLOv12 also surpasses end-to-end real-time detectors that improve DETR, such as RT-DETR / RT-DETRv2: YOLOv12-S beats RT-DETR-R18 / RT-DETRv2-R18 while running 42% faster, using only 36% of the computation and 45% of the parameters. More comparisons are shown in Figure 1.
ETLNet: An Efficient TCN-BiLSTM Network for Road Anomaly Detection Using Smartphone Sensors
Ansari, Mohd Faiz, Sandilya, Rakshit, Javed, Mohammed, Doermann, David
Road anomalies can be defined as irregularities on the road surface or in the surface itself. Some may be intentional (such as speedbumps), accidental (such as materials falling off a truck), or the result of roads' excessive use or low or no maintenance, such as potholes. Despite their varying origins, these irregularities often harm vehicles substantially. Speed bumps are intentionally placed for safety but are dangerous due to their non-standard shape, size, and lack of proper markings. Potholes are unintentional and can also cause severe damage. To address the detection of these anomalies, we need an automated road monitoring system. Today, various systems exist that use visual information to track these anomalies. Still, due to poor lighting conditions and improper or missing markings, they may go undetected and have severe consequences for public transport, automated vehicles, etc. In this paper, the Enhanced Temporal-BiLSTM Network (ETLNet) is introduced as a novel approach that integrates two Temporal Convolutional Network (TCN) layers with a Bidirectional Long Short-Term Memory (BiLSTM) layer. This combination is tailored to detect anomalies effectively irrespective of lighting conditions, as it depends not on visuals but smartphone inertial sensor data. Our methodology employs accelerometer and gyroscope sensors, typically in smartphones, to gather data on road conditions. Empirical evaluations demonstrate that the ETLNet model maintains an F1-score for detecting speed bumps of 99.3%. The ETLNet model's robustness and efficiency significantly advance automated road surface monitoring technologies.
Artemis: Towards Referential Understanding in Complex Videos
Qiu, Jihao, Zhang, Yuan, Tang, Xi, Xie, Lingxi, Ma, Tianren, Yan, Pengyu, Doermann, David, Ye, Qixiang, Tian, Yunjie
Videos carry rich visual information including object description, action, interaction, etc., but the existing multimodal large language models (MLLMs) fell short in referential understanding scenarios such as video-based referring. In this paper, we present Artemis, an MLLM that pushes video-based referential understanding to a finer level. Given a video, Artemis receives a natural-language question with a bounding box in any video frame and describes the referred target in the entire video. The key to achieving this goal lies in extracting compact, targetspecific video features, where we set a solid baseline by tracking and selecting spatiotemporal features from the video. We train Artemis on the newly established VideoRef45K dataset with 45K video-QA pairs and design a computationally efficient, three-stage training procedure. Results are promising both quantitatively and qualitatively. Additionally, we show that Artemis can be integrated with video grounding and text summarization tools to understand more complex scenarios.
Federated Learning via Input-Output Collaborative Distillation
Gong, Xuan, Li, Shanglin, Bao, Yuxiang, Yao, Barry, Huang, Yawen, Wu, Ziyan, Zhang, Baochang, Zheng, Yefeng, Doermann, David
Federated learning (FL) is a machine learning paradigm in which distributed local nodes collaboratively train a central model without sharing individually held private data. Existing FL methods either iteratively share local model parameters or deploy co-distillation. However, the former is highly susceptible to private data leakage, and the latter design relies on the prerequisites of task-relevant real data. Instead, we propose a data-free FL framework based on local-to-central collaborative distillation with direct input and output space exploitation. Our design eliminates any requirement of recursive local parameter exchange or auxiliary task-relevant data to transfer knowledge, thereby giving direct privacy control to local users. In particular, to cope with the inherent data heterogeneity across locals, our technique learns to distill input on which each local model produces consensual yet unique results to represent each expertise. Our proposed FL framework achieves notable privacy-utility trade-offs with extensive experiments on image classification and segmentation tasks under various real-world heterogeneous federated learning settings on both natural and medical images.
Semantic Text-to-Face GAN -ST^2FG
Oza, Manan, Chanda, Sukalpa, Doermann, David
Faces generated using generative adversarial networks (GANs) have reached unprecedented realism. These faces, also known as "Deep Fakes", appear as realistic photographs with very little pixel-level distortions. While some work has enabled the training of models that lead to the generation of specific properties of the subject, generating a facial image based on a natural language description has not been fully explored. For security and criminal identification, the ability to provide a GAN-based system that works like a sketch artist would be incredibly useful. In this paper, we present a novel approach to generate facial images from semantic text descriptions. The learned model is provided with a text description and an outline of the type of face, which the model uses to sketch the features. Our models are trained using an Affine Combination Module (ACM) mechanism to combine the text embedding from BERT and the GAN latent space using a self-attention matrix. This avoids the loss of features due to inadequate "attention", which may happen if text embedding and latent vector are simply concatenated. Our approach is capable of generating images that are very accurately aligned to the exhaustive textual descriptions of faces with many fine detail features of the face and helps in generating better images. The proposed method is also capable of making incremental changes to a previously generated image if it is provided with additional textual descriptions or sentences.
The Analysis and Extraction of Structure from Organizational Charts
Manali, Nikhil, Doermann, David, Desai, Mahesh
Organizational charts, also known as org charts, are critical representations of an organization's structure and the hierarchical relationships between its components and positions. However, manually extracting information from org charts can be error-prone and time-consuming. To solve this, we present an automated and end-to-end approach that uses computer vision, deep learning, and natural language processing techniques. Additionally, we propose a metric to evaluate the completeness and hierarchical accuracy of the extracted information. This approach has the potential to improve organizational restructuring and resource utilization by providing a clear and concise representation of the organizational structure. Our study lays a foundation for further research on the topic of hierarchical chart analysis.
SpaDen : Sparse and Dense Keypoint Estimation for Real-World Chart Understanding
Ahmed, Saleem, Yan, Pengyu, Doermann, David, Setlur, Srirangaraj, Govindaraju, Venu
We introduce a novel bottom-up approach for the extraction of chart data. Our model utilizes images of charts as inputs and learns to detect keypoints (KP), which are used to reconstruct the components within the plot area. Our novelty lies in detecting a fusion of continuous and discrete KP as predicted heatmaps. A combination of sparse and dense per-pixel objectives coupled with a uni-modal self-attention-based feature-fusion layer is applied to learn KP embeddings. Further leveraging deep metric learning for unsupervised clustering, allows us to segment the chart plot area into various objects. By further matching the chart components to the legend, we are able to obtain the data series names. A post-processing threshold is applied to the KP embeddings to refine the object reconstructions and improve accuracy. Our extensive experiments include an evaluation of different modules for KP estimation and the combination of deep layer aggregation and corner pooling approaches. The results of our experiments provide extensive evaluation for the task of real-world chart data extraction.
LineFormer: Rethinking Line Chart Data Extraction as Instance Segmentation
Lal, Jay, Mitkari, Aditya, Bhosale, Mahesh, Doermann, David
Data extraction from line-chart images is an essential component of the automated document understanding process, as line charts are a ubiquitous data visualization format. However, the amount of visual and structural variations in multi-line graphs makes them particularly challenging for automated parsing. Existing works, however, are not robust to all these variations, either taking an all-chart unified approach or relying on auxiliary information such as legends for line data extraction. In this work, we propose LineFormer, a robust approach to line data extraction using instance segmentation. We achieve state-of-the-art performance on several benchmark synthetic and real chart datasets.
PREF: Predictability Regularized Neural Motion Fields
Song, Liangchen, Gong, Xuan, Planche, Benjamin, Zheng, Meng, Doermann, David, Yuan, Junsong, Chen, Terrence, Wu, Ziyan
Knowing the 3D motions in a dynamic scene is essential to many vision applications. Recent progress is mainly focused on estimating the activity of some specific elements like humans. In this paper, we leverage a neural motion field for estimating the motion of all points in a multiview setting. Modeling the motion from a dynamic scene with multiview data is challenging due to the ambiguities in points of similar color and points with time-varying color. We propose to regularize the estimated motion to be predictable. If the motion from previous frames is known, then the motion in the near future should be predictable. Therefore, we introduce a predictability regularization by first conditioning the estimated motion on latent embeddings, then by adopting a predictor network to enforce predictability on the embeddings. The proposed framework PREF (Predictability REgularized Fields) achieves on par or better results than state-of-the-art neural motion field-based dynamic scene representation methods, while requiring no prior knowledge of the scene.
Progressive Multi-view Human Mesh Recovery with Self-Supervision
Gong, Xuan, Song, Liangchen, Zheng, Meng, Planche, Benjamin, Chen, Terrence, Yuan, Junsong, Doermann, David, Wu, Ziyan
To date, little attention has been given to multi-view 3D human mesh estimation, despite real-life applicability (e.g., motion capture, sport analysis) and robustness to single-view ambiguities. Existing solutions typically suffer from poor generalization performance to new settings, largely due to the limited diversity of image-mesh pairs in multi-view training data. To address this shortcoming, people have explored the use of synthetic images. But besides the usual impact of visual gap between rendered and target data, synthetic-data-driven multi-view estimators also suffer from overfitting to the camera viewpoint distribution sampled during training which usually differs from real-world distributions. Tackling both challenges, we propose a novel simulation-based training pipeline for multi-view human mesh recovery, which (a) relies on intermediate 2D representations which are more robust to synthetic-to-real domain gap; (b) leverages learnable calibration and triangulation to adapt to more diversified camera setups; and (c) progressively aggregates multi-view information in a canonical 3D space to remove ambiguities in 2D representations. Through extensive benchmarking, we demonstrate the superiority of the proposed solution especially for unseen in-the-wild scenarios.