Goto

Collaborating Authors

 Docekal, Martin


BenCzechMark : A Czech-centric Multitask and Multimetric Benchmark for Large Language Models with Duel Scoring Mechanism

arXiv.org Artificial Intelligence

We present BenCzechMark (BCM), the first comprehensive Czech language benchmark designed for large language models, offering diverse tasks, multiple task formats, and multiple evaluation metrics. Its scoring system is grounded in statistical significance theory and uses aggregation across tasks inspired by social preference theory. Our benchmark encompasses 50 challenging tasks, with corresponding test datasets, primarily in native Czech, with 11 newly collected ones. These tasks span 8 categories and cover diverse domains, including historical Czech news, essays from pupils or language learners, and spoken word. Furthermore, we collect and clean BUT-Large Czech Collection, the largest publicly available clean Czech language corpus, and use it for (i) contamination analysis, (ii) continuous pretraining of the first Czech-centric 7B language model, with Czech-specific tokenization. We use our model as a baseline for comparison with publicly available multilingual models. Lastly, we release and maintain a leaderboard, with existing 44 model submissions, where new model submissions can be made at https://huggingface.co/spaces/CZLC/BenCzechMark.


OARelatedWork: A Large-Scale Dataset of Related Work Sections with Full-texts from Open Access Sources

arXiv.org Artificial Intelligence

This paper introduces OARelatedWork, the first large-scale multi-document summarization dataset for related work generation containing whole related work sections and full-texts of cited papers. The dataset includes 94 450 papers and 5 824 689 unique referenced papers. It was designed for the task of automatically generating related work to shift the field toward generating entire related work sections from all available content instead of generating parts of related work sections from abstracts only, which is the current mainstream in this field for abstractive approaches. We show that the estimated upper bound for extractive summarization increases by 217% in the ROUGE-2 score, when using full content instead of abstracts. Furthermore, we show the benefits of full content data on naive, oracle, traditional, and transformer-based baselines. Long outputs, such as related work sections, pose challenges for automatic evaluation metrics like BERTScore due to their limited input length. We tackle this issue by proposing and evaluating a meta-metric using BERTScore. Despite operating on smaller blocks, we show this meta-metric correlates with human judgment, comparably to the original BERTScore.


Pruning the Index Contents for Memory Efficient Open-Domain QA

arXiv.org Artificial Intelligence

This work presents a novel pipeline that demonstrates what is achievable with a combined effort of state-of-the-art approaches, surpassing the 50% exact match on NaturalQuestions and EfficentQA datasets. Specifically, it proposes the novel R2-D2 (Rank twice, reaD twice) pipeline composed of retriever, reranker, extractive reader, generative reader and a simple way to combine them. Furthermore, previous work often comes with a massive index of external documents that scales in the order of tens of GiB. This work presents a simple approach for pruning the contents of a massive index such that the open-domain QA system altogether with index, OS, and library components fits into 6GiB docker image while retaining only 8% of original index contents and losing only 3% EM accuracy.


NeurIPS 2020 EfficientQA Competition: Systems, Analyses and Lessons Learned

arXiv.org Artificial Intelligence

We review the EfficientQA competition from NeurIPS 2020. The competition focused on open-domain question answering (QA), where systems take natural language questions as input and return natural language answers. The aim of the competition was to build systems that can predict correct answers while also satisfying strict on-disk memory budgets. These memory budgets were designed to encourage contestants to explore the trade-off between storing large, redundant, retrieval corpora or the parameters of large learned models. In this report, we describe the motivation and organization of the competition, review the best submissions, and analyze system predictions to inform a discussion of evaluation for open-domain QA.


BUT-FIT at SemEval-2020 Task 5: Automatic detection of counterfactual statements with deep pre-trained language representation models

arXiv.org Machine Learning

This paper describes BUT-FIT's submission at SemEval-2020 Task 5: Modelling Causal Reasoning in Language: Detecting Counterfactuals. The challenge focused on detecting whether a given statement contains a counterfactual (Subtask 1) and extracting both antecedent and consequent parts of the counterfactual from the text (Subtask 2). We experimented with various state-of-the-art language representation models (LRMs). We found RoBERTa LRM to perform the best in both subtasks. We achieved the first place in both exact match and F1 for Subtask 2 and ranked second for Subtask 1.