Goto

Collaborating Authors

 Dobriban, Edgar


Likelihood-Ratio Regularized Quantile Regression: Adapting Conformal Prediction to High-Dimensional Covariate Shifts

arXiv.org Machine Learning

We consider the problem of conformal prediction under covariate shift. Given labeled data from a source domain and unlabeled data from a covariate shifted target domain, we seek to construct prediction sets with valid marginal coverage in the target domain. Most existing methods require estimating the unknown likelihood ratio function, which can be prohibitive for high-dimensional data such as images. To address this challenge, we introduce the likelihood ratio regularized quantile regression (LR-QR) algorithm, which combines the pinball loss with a novel choice of regularization in order to construct a threshold function without directly estimating the unknown likelihood ratio. We show that the LR-QR method has coverage at the desired level in the target domain, up to a small error term that we can control. Our proofs draw on a novel analysis of coverage via stability bounds from learning theory. Our experiments demonstrate that the LR-QR algorithm outperforms existing methods on high-dimensional prediction tasks, including a regression task for the Communities and Crime dataset, and an image classification task from the WILDS repository.


JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models

arXiv.org Artificial Intelligence

Jailbreak attacks cause large language models (LLMs) to generate harmful, unethical, or otherwise objectionable content. Evaluating these attacks presents a number of challenges, which the current collection of benchmarks and evaluation techniques do not adequately address. First, there is no clear standard of practice regarding jailbreaking evaluation. Second, existing works compute costs and success rates in incomparable ways. And third, numerous works are not reproducible, as they withhold adversarial prompts, involve closed-source code, or rely on evolving proprietary APIs. To address these challenges, we introduce JailbreakBench, an open-sourced benchmark with the following components: (1) an evolving repository of state-of-the-art adversarial prompts, which we refer to as jailbreak artifacts; (2) a jailbreaking dataset comprising 100 behaviors -- both original and sourced from prior work (Zou et al., 2023; Mazeika et al., 2023, 2024) -- which align with OpenAI's usage policies; (3) a standardized evaluation framework at https://github.com/JailbreakBench/jailbreakbench that includes a clearly defined threat model, system prompts, chat templates, and scoring functions; and (4) a leaderboard at https://jailbreakbench.github.io/ that tracks the performance of attacks and defenses for various LLMs. We have carefully considered the potential ethical implications of releasing this benchmark, and believe that it will be a net positive for the community.


Evaluating the Performance of Large Language Models via Debates

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are rapidly evolving and impacting various fields, necessitating the development of effective methods to evaluate and compare their performance. Most current approaches for performance evaluation are either based on fixed, domain-specific questions that lack the flexibility required in many real-world applications where tasks are not always from a single domain, or rely on human input, making them unscalable. We propose an automated benchmarking framework based on debates between LLMs, judged by another LLM. This method assesses not only domain knowledge, but also skills such as problem definition and inconsistency recognition. We evaluate the performance of various state-of-the-art LLMs using the debate framework and achieve rankings that align closely with popular rankings based on human input, eliminating the need for costly human crowdsourcing.


Watermarking Language Models with Error Correcting Codes

arXiv.org Artificial Intelligence

As language model capabilities improve, there are corresponding potential harms such as the creation of misinformation (Zellers et al., 2020) and propaganda (Solaiman et al., 2019). To mitigate this, a first step is to detect and filter content. A popular approach to reliably detecting AI generated content is to add a watermark (Kirchenbauer et al., 2023; Kuditipudi et al., 2023; Aaronson and Kirchner, 2022; Christ et al., 2023), a hidden signal embedded in the output. While there are exponentially many combinations of words and characters, watermarking biases generation towards specific patterns that are undetectable to humans. We consider the detection setting from the model-provider's perspective: the detection algorithm receives (user or machine-generated) text as input, but no further metadata such as prompts or generation parameters. We do not explore zero-shot or post-hoc methods to classify text as generated from any language model, such as GPT-Zero (Tian and Cui, 2023) and DetectGPT (Mitchell et al., 2023). This model-agnostic detection is inherently challenging as language models are trained to mimic human text (Bender et al., 2021).


One-Shot Safety Alignment for Large Language Models via Optimal Dualization

arXiv.org Machine Learning

The growing safety concerns surrounding Large Language Models (LLMs) raise an urgent need to align them with diverse human preferences to simultaneously enhance their helpfulness and safety. A promising approach is to enforce safety constraints through Reinforcement Learning from Human Feedback (RLHF). For such constrained RLHF, common Lagrangian-based primal-dual policy optimization methods are computationally expensive and often unstable. This paper presents a dualization perspective that reduces constrained alignment to an equivalent unconstrained alignment problem. We do so by pre-optimizing a smooth and convex dual function that has a closed form. This shortcut eliminates the need for cumbersome primal-dual policy iterations, thus greatly reducing the computational burden and improving training stability. Our strategy leads to two practical algorithms in model-based and preference-based scenarios (MoCAN and PeCAN, respectively). A broad range of experiments demonstrate the effectiveness of our methods.


Uncertainty in Language Models: Assessment through Rank-Calibration

arXiv.org Machine Learning

Language Models (LMs) have shown promising performance in natural language generation. However, as LMs often generate incorrect or hallucinated responses, it is crucial to correctly quantify their uncertainty in responding to given inputs. In addition to verbalized confidence elicited via prompting, many uncertainty measures ($e.g.$, semantic entropy and affinity-graph-based measures) have been proposed. However, these measures can differ greatly, and it is unclear how to compare them, partly because they take values over different ranges ($e.g.$, $[0,\infty)$ or $[0,1]$). In this work, we address this issue by developing a novel and practical framework, termed $Rank$-$Calibration$, to assess uncertainty and confidence measures for LMs. Our key tenet is that higher uncertainty (or lower confidence) should imply lower generation quality, on average. Rank-calibration quantifies deviations from this ideal relationship in a principled manner, without requiring ad hoc binary thresholding of the correctness score ($e.g.$, ROUGE or METEOR). The broad applicability and the granular interpretability of our methods are demonstrated empirically.


Inference in Randomized Least Squares and PCA via Normality of Quadratic Forms

arXiv.org Machine Learning

Randomized algorithms can be used to speed up the analysis of large datasets. In this paper, we develop a unified methodology for statistical inference via randomized sketching or projections in two of the most fundamental problems in multivariate statistical analysis: least squares and PCA. The methodology applies to fixed datasets -- i.e., is data-conditional -- and the only randomness is due to the randomized algorithm. We propose statistical inference methods for a broad range of sketching distributions, such as the subsampled randomized Hadamard transform (SRHT), Sparse Sign Embeddings (SSE) and CountSketch, sketching matrices with i.i.d. entries, and uniform subsampling. To our knowledge, no comparable methods are available for SSE and for SRHT in PCA. Our novel theoretical approach rests on showing the asymptotic normality of certain quadratic forms. As a contribution of broader interest, we show central limit theorems for quadratic forms of the SRHT, relying on a novel proof via a dyadic expansion that leverages the recursive structure of the Hadamard transform. Numerical experiments using both synthetic and empirical datasets support the efficacy of our methods, and in particular suggest that sketching methods can have better computation-estimation tradeoffs than recently proposed optimal subsampling methods.


Minimax Optimal Fair Classification with Bounded Demographic Disparity

arXiv.org Machine Learning

Mitigating the disparate impact of statistical machine learning methods is crucial for ensuring fairness. While extensive research aims to reduce disparity, the effect of using a \emph{finite dataset} -- as opposed to the entire population -- remains unclear. This paper explores the statistical foundations of fair binary classification with two protected groups, focusing on controlling demographic disparity, defined as the difference in acceptance rates between the groups. Although fairness may come at the cost of accuracy even with infinite data, we show that using a finite sample incurs additional costs due to the need to estimate group-specific acceptance thresholds. We study the minimax optimal classification error while constraining demographic disparity to a user-specified threshold. To quantify the impact of fairness constraints, we introduce a novel measure called \emph{fairness-aware excess risk} and derive a minimax lower bound on this measure that all classifiers must satisfy. Furthermore, we propose FairBayes-DDP+, a group-wise thresholding method with an offset that we show attains the minimax lower bound. Our lower bound proofs involve several innovations. Experiments support that FairBayes-DDP+ controls disparity at the user-specified level, while being faster and having a more favorable fairness-accuracy tradeoff than several baselines.


Bayes-Optimal Fair Classification with Linear Disparity Constraints via Pre-, In-, and Post-processing

arXiv.org Artificial Intelligence

Machine learning algorithms may have disparate impacts on protected groups. To address this, we develop methods for Bayes-optimal fair classification, aiming to minimize classification error subject to given group fairness constraints. We introduce the notion of \emph{linear disparity measures}, which are linear functions of a probabilistic classifier; and \emph{bilinear disparity measures}, which are also linear in the group-wise regression functions. We show that several popular disparity measures -- the deviations from demographic parity, equality of opportunity, and predictive equality -- are bilinear. We find the form of Bayes-optimal fair classifiers under a single linear disparity measure, by uncovering a connection with the Neyman-Pearson lemma. For bilinear disparity measures, Bayes-optimal fair classifiers become group-wise thresholding rules. Our approach can also handle multiple fairness constraints (such as equalized odds), and the common scenario when the protected attribute cannot be used at the prediction phase. Leveraging our theoretical results, we design methods that learn fair Bayes-optimal classifiers under bilinear disparity constraints. Our methods cover three popular approaches to fairness-aware classification, via pre-processing (Fair Up- and Down-Sampling), in-processing (Fair Cost-Sensitive Classification) and post-processing (a Fair Plug-In Rule). Our methods control disparity directly while achieving near-optimal fairness-accuracy tradeoffs. We show empirically that our methods compare favorably to existing algorithms.


T-Cal: An optimal test for the calibration of predictive models

arXiv.org Machine Learning

The prediction accuracy of machine learning methods is steadily increasing, but the calibration of their uncertainty predictions poses a significant challenge. Numerous works focus on obtaining well-calibrated predictive models, but less is known about reliably assessing model calibration. This limits our ability to know when algorithms for improving calibration have a real effect, and when their improvements are merely artifacts due to random noise in finite datasets. In this work, we consider detecting mis-calibration of predictive models using a finite validation dataset as a hypothesis testing problem. The null hypothesis is that the predictive model is calibrated, while the alternative hypothesis is that the deviation from calibration is sufficiently large. We find that detecting mis-calibration is only possible when the conditional probabilities of the classes are sufficiently smooth functions of the predictions. When the conditional class probabilities are H\"older continuous, we propose T-Cal, a minimax optimal test for calibration based on a debiased plug-in estimator of the $\ell_2$-Expected Calibration Error (ECE). We further propose Adaptive T-Cal, a version that is adaptive to unknown smoothness. We verify our theoretical findings with a broad range of experiments, including with several popular deep neural net architectures and several standard post-hoc calibration methods. T-Cal is a practical general-purpose tool, which -- combined with classical tests for discrete-valued predictors -- can be used to test the calibration of virtually any probabilistic classification method.