Do, Chau
Acting Thoughts: Towards a Mobile Robotic Service Assistant for Users with Limited Communication Skills
Burget, Felix, Fiederer, Lukas Dominique Josef, Kuhner, Daniel, Völker, Martin, Aldinger, Johannes, Schirrmeister, Robin Tibor, Do, Chau, Boedecker, Joschka, Nebel, Bernhard, Ball, Tonio, Burgard, Wolfram
As autonomous service robots become more affordable and thus available also for the general public, there is a growing need for user friendly interfaces to control the robotic system. Currently available control modalities typically expect users to be able to express their desire through either touch, speech or gesture commands. While this requirement is fulfilled for the majority of users, paralyzed users may not be able to use such systems. In this paper, we present a novel framework, that allows these users to interact with a robotic service assistant in a closed-loop fashion, using only thoughts. The brain-computer interface (BCI) system is composed of several interacting components, i.e., non-invasive neuronal signal recording and decoding, high-level task planning, motion and manipulation planning as well as environment perception. In various experiments, we demonstrate its applicability and robustness in real world scenarios, considering fetch-and-carry tasks and tasks involving human-robot interaction. As our results demonstrate, our system is capable of adapting to frequent changes in the environment and reliably completing given tasks within a reasonable amount of time. Combined with high-level planning and autonomous robotic systems, interesting new perspectives open up for non-invasive BCI-based human-robot interactions.
Using MathML to Represent Units of Measurement for Improved Ontology Alignment
Do, Chau, Pauwels, Eric J.
Ontologies provide a formal description of concepts and their relationships in a knowledge domain. The goal of ontology alignment is to identify semantically matching concepts and relationships across independently developed ontologies that purport to describe the same knowledge. In order to handle the widest possible class of ontologies, many alignment algorithms rely on terminological and structural meth- ods, but the often fuzzy nature of concepts complicates the matching process. However, one area that should provide clear matching solutions due to its mathematical nature, is units of measurement. Several on- tologies for units of measurement are available, but there has been no attempt to align them, notwithstanding the obvious importance for tech- nical interoperability. We propose a general strategy to map these (and similar) ontologies by introducing MathML to accurately capture the semantic description of concepts specified therein. We provide mapping results for three ontologies, and show that our approach improves on lexical comparisons.