Goto

Collaborating Authors

 Ding, Zheng


Video2Policy: Scaling up Manipulation Tasks in Simulation through Internet Videos

arXiv.org Artificial Intelligence

Simulation offers a promising approach for cheaply scaling training data for generalist policies. To scalably generate data from diverse and realistic tasks, existing algorithms either rely on large language models (LLMs) that may hallucinate tasks not interesting for robotics; or digital twins, which require careful real-to-sim alignment and are hard to scale. To address these challenges, we introduce Video2Policy, a novel framework that leverages internet RGB videos to reconstruct tasks based on everyday human behavior. Our approach comprises two phases: (1) task generation in simulation from videos; and (2) reinforcement learning utilizing in-context LLM-generated reward functions iteratively. We demonstrate the efficacy of Video2Policy by reconstructing over 100 videos from the Something-Something-v2 (SSv2) dataset, which depicts diverse and complex human behaviors on 9 different tasks. Our method can successfully train RL policies on such tasks, including complex and challenging tasks such as throwing. Finally, we show that the generated simulation data can be scaled up for training a general policy, and it can be transferred back to the real robot in a Real2Sim2Real way.


Dolfin: Diffusion Layout Transformers without Autoencoder

arXiv.org Artificial Intelligence

In this paper, we introduce a novel generative model, Diffusion Layout Transformers without Autoencoder (Dolfin), which significantly improves the modeling capability with reduced complexity compared to existing methods. Dolfin employs a Transformer-based diffusion process to model layout generation. In addition to an efficient bi-directional (non-causal joint) sequence representation, we further propose an autoregressive diffusion model (Dolfin-AR) that is especially adept at capturing rich semantic correlations for the neighboring objects, such as alignment, size, and overlap. When evaluated against standard generative layout benchmarks, Dolfin notably improves performance across various metrics (fid, alignment, overlap, MaxIoU and DocSim scores), enhancing transparency and interoperability in the process. Moreover, Dolfin's applications extend beyond layout generation, making it suitable for modeling geometric structures, such as line segments. Our experiments present both qualitative and quantitative results to demonstrate the advantages of Dolfin.