Not enough data to create a plot.
Try a different view from the menu above.
Ding, Xueying
Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions
Li, Yubo, Miao, Yidi, Ding, Xueying, Krishnan, Ramayya, Padman, Rema
Large Language Models (LLMs) have shown remarkable capabilities across various tasks, but their deployment in high-stake domains requires consistent performance across multiple interaction rounds. This paper introduces a comprehensive framework for evaluating and improving LLM response consistency, making three key contributions. First, we propose a novel Position-Weighted Consistency (PWC) score that captures both the importance of early-stage stability and recovery patterns in multi-turn interactions. Second, we present a carefully curated benchmark dataset spanning diverse domains and difficulty levels, specifically designed to evaluate LLM consistency under various challenging follow-up scenarios. Third, we introduce Confidence-Aware Response Generation (CARG), a framework that significantly improves response stability by incorporating model confidence signals into the generation process. Empirical results demonstrate that CARG significantly improves response stability without sacrificing accuracy, underscoring its potential for reliable LLM deployment in critical applications.
MetaOOD: Automatic Selection of OOD Detection Models
Qin, Yuehan, Zhang, Yichi, Nian, Yi, Ding, Xueying, Zhao, Yue
How can we automatically select an out-of-distribution (OOD) detection model for various underlying tasks? This is crucial for maintaining the reliability of open-world applications by identifying data distribution shifts, particularly in critical domains such as online transactions, autonomous driving, and real-time patient diagnosis. Despite the availability of numerous OOD detection methods, the challenge of selecting an optimal model for diverse tasks remains largely underexplored, especially in scenarios lacking ground truth labels. In this work, we introduce MetaOOD, the first zero-shot, unsupervised framework that utilizes meta-learning to automatically select an OOD detection model. As a meta-learning approach, MetaOOD leverages historical performance data of existing methods across various benchmark OOD datasets, enabling the effective selection of a suitable model for new datasets without the need for labeled data at the test time. To quantify task similarities more accurately, we introduce language model-based embeddings that capture the distinctive OOD characteristics of both datasets and detection models. Through extensive experimentation with 24 unique test dataset pairs to choose from among 11 OOD detection models, we demonstrate that MetaOOD significantly outperforms existing methods and only brings marginal time overhead. Our results, validated by Wilcoxon statistical tests, show that MetaOOD surpasses a diverse group of 11 baselines, including established OOD detectors and advanced unsupervised selection methods.
PyGOD: A Python Library for Graph Outlier Detection
Liu, Kay, Dou, Yingtong, Ding, Xueying, Hu, Xiyang, Zhang, Ruitong, Peng, Hao, Sun, Lichao, Yu, Philip S.
PyGOD is an open-source Python library for detecting outliers in graph data. As the first comprehensive library of its kind, PyGOD supports a wide array of leading graph-based methods for outlier detection under an easy-to-use, well-documented API designed for use by both researchers and practitioners. PyGOD provides modularized components of the different detectors implemented so that users can easily customize each detector for their purposes. To ease the construction of detection workflows, PyGOD offers numerous commonly used utility functions. To scale computation to large graphs, PyGOD supports functionalities for deep models such as sampling and mini-batch processing. PyGOD uses best practices in fostering code reliability and maintainability, including unit testing, continuous integration, and code coverage. To facilitate accessibility, PyGOD is released under a BSD 2-Clause license at https://pygod.org and at the Python Package Index (PyPI).
Improving and Unifying Discrete&Continuous-time Discrete Denoising Diffusion
Zhao, Lingxiao, Ding, Xueying, Yu, Lijun, Akoglu, Leman
Discrete diffusion models have seen a surge of attention with applications on naturally discrete data such as language and graphs. Although discrete-time discrete diffusion has been established for a while, only recently Campbell et al. (2022) introduced the first framework for continuous-time discrete diffusion. However, their training and sampling processes differ significantly from the discrete-time version, necessitating nontrivial approximations for tractability. In this paper, we first present a series of mathematical simplifications of the variational lower bound that enable more accurate and easy-to-optimize training for discrete diffusion. In addition, we derive a simple formulation for backward denoising that enables exact and accelerated sampling, and importantly, an elegant unification of discrete-time and continuous-time discrete diffusion. Thanks to simpler analytical formulations, both forward and now also backward probabilities can flexibly accommodate any noise distribution, including different noise distributions for multi-element objects. Experiments show that our proposed USD3 (for Unified Simplified Discrete Denoising Diffusion) outperform all SOTA baselines on established datasets. We open-source our unified code at https://github.com/LingxiaoShawn/USD3.
Pard: Permutation-Invariant Autoregressive Diffusion for Graph Generation
Zhao, Lingxiao, Ding, Xueying, Akoglu, Leman
Graph generation has been dominated by autoregressive models due to their simplicity and effectiveness, despite their sensitivity to ordering. Yet diffusion models have garnered increasing attention, as they offer comparable performance while being permutation-invariant. Current graph diffusion models generate graphs in a one-shot fashion, but they require extra features and thousands of denoising steps to achieve optimal performance. We introduce PARD, a Permutation-invariant Auto Regressive Diffusion model that integrates diffusion models with autoregressive methods. PARD harnesses the effectiveness and efficiency of the autoregressive model while maintaining permutation invariance without ordering sensitivity. Specifically, we show that contrary to sets, elements in a graph are not entirely unordered and there is a unique partial order for nodes and edges. With this partial order, PARD generates a graph in a block-by-block, autoregressive fashion, where each block's probability is conditionally modeled by a shared diffusion model with an equivariant network. To ensure efficiency while being expressive, we further propose a higher-order graph transformer, which integrates transformer with PPGN. Like GPT, we extend the higher-order graph transformer to support parallel training of all blocks. Without any extra features, PARD achieves state-of-the-art performance on molecular and non-molecular datasets, and scales to large datasets like MOSES containing 1.9M molecules.
PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks
Zhao, Zhiyuan, Ding, Xueying, Prakash, B. Aditya
Physics-Informed Neural Networks (PINNs) have emerged as a promising deep learning framework for approximating numerical solutions to partial differential equations (PDEs). However, conventional PINNs, relying on multilayer perceptrons (MLP), neglect the crucial temporal dependencies inherent in practical physics systems and thus fail to propagate the initial condition constraints globally and accurately capture the true solutions under various scenarios. In this paper, we introduce a novel Transformer-based framework, termed PINNsFormer, designed to address this limitation. PINNsFormer can accurately approximate PDE solutions by utilizing multi-head attention mechanisms to capture temporal dependencies. PINNsFormer transforms point-wise inputs into pseudo sequences and replaces point-wise PINNs loss with a sequential loss. Additionally, it incorporates a novel activation function, Wavelet, which anticipates Fourier decomposition through deep neural networks. Empirical results demonstrate that PINNsFormer achieves superior generalization ability and accuracy across various scenarios, including PINNs failure modes and high-dimensional PDEs. Moreover, PINNsFormer offers flexibility in integrating existing learning schemes for PINNs, further enhancing its performance.
Fast Unsupervised Deep Outlier Model Selection with Hypernetworks
Ding, Xueying, Zhao, Yue, Akoglu, Leman
Outlier detection (OD) finds many applications with a rich literature of numerous techniques. Deep neural network based OD (DOD) has seen a recent surge of attention thanks to the many advances in deep learning. In this paper, we consider a critical-yet-understudied challenge with unsupervised DOD, that is, effective hyperparameter (HP) tuning/model selection. While several prior work report the sensitivity of OD models to HPs, it becomes ever so critical for the modern DOD models that exhibit a long list of HPs. We introduce HYPER for tuning DOD models, tackling two fundamental challenges: (1) validation without supervision (due to lack of labeled anomalies), and (2) efficient search of the HP/model space (due to exponential growth in the number of HPs). A key idea is to design and train a novel hypernetwork (HN) that maps HPs onto optimal weights of the main DOD model. In turn, HYPER capitalizes on a single HN that can dynamically generate weights for many DOD models (corresponding to varying HPs), which offers significant speed-up. In addition, it employs meta-learning on historical OD tasks with labels to train a proxy validation function, likewise trained with our proposed HN efficiently. Extensive experiments on 35 OD tasks show that HYPER achieves high performance against 8 baselines with significant efficiency gains.
From Explanation to Action: An End-to-End Human-in-the-loop Framework for Anomaly Reasoning and Management
Ding, Xueying, Seleznev, Nikita, Kumar, Senthil, Bruss, C. Bayan, Akoglu, Leman
Anomalies are often indicators of malfunction or inefficiency in various systems such as manufacturing, healthcare, finance, surveillance, to name a few. While the literature is abundant in effective detection algorithms due to this practical relevance, autonomous anomaly detection is rarely used in real-world scenarios. Especially in high-stakes applications, a human-in-the-loop is often involved in processes beyond detection such as verification and troubleshooting. In this work, we introduce ALARM (for Analyst-in-the-Loop Anomaly Reasoning and Management); an end-to-end framework that supports the anomaly mining cycle comprehensively, from detection to action. Besides unsupervised detection of emerging anomalies, it offers anomaly explanations and an interactive GUI for human-in-the-loop processes -- visual exploration, sense-making, and ultimately action-taking via designing new detection rules -- that help close ``the loop'' as the new rules complement rule-based supervised detection, typical of many deployed systems in practice. We demonstrate \method's efficacy through a series of case studies with fraud analysts from the financial industry.
Causal inference using deep neural networks
Yuan, Ye, Ding, Xueying, Bar-Joseph, Ziv
Causal inference from observation data is a core problem in many scientific fields. Here we present a general supervised deep learning framework that infers causal interactions by transforming the input vectors to an image-like representation for every pair of inputs. Given a training dataset we first construct a normalized empirical probability density distribution (NEPDF) matrix. We then train a convolutional neural network (CNN) on NEPDFs for causality predictions. We tested the method on several different simulated and real world data and compared it to prior methods for causal inference. As we show, the method is general, can efficiently handle very large datasets and improves upon prior methods.
Combining Machine Learning Models using combo Library
Zhao, Yue, Wang, Xuejian, Cheng, Cheng, Ding, Xueying
Model combination, often regarded as a key sub-field of ensemble learning, has been widely used in both academic research and industry applications. To facilitate this process, we propose and implement an easy-to-use Python toolkit, combo, to aggregate models and scores under various scenarios, including classification, clustering, and anomaly detection. In a nutshell, combo provides a unified and consistent way to combine the learning models from popular machine learning libraries, e.g., scikit-learn, XGBoost, and LightGBM. With accessibility and robustness in mind, combo is designed with detailed documentation, interactive examples, continuous integration, code coverage, and maintainability check; it can be installed easily through Python Package Index (PyPI) or https://github.com/yzhao062/combo.