Ding, Wenbo
Growing from Exploration: A self-exploring framework for robots based on foundation models
Li, Shoujie, Yu, Ran, Wu, Tong, Zhong, JunWen, Zhang, Xiao-Ping, Ding, Wenbo
Intelligent robot is the ultimate goal in the robotics field. Existing works leverage learning-based or optimization-based methods to accomplish human-defined tasks. However, the challenge of enabling robots to explore various environments autonomously remains unresolved. In this work, we propose a framework named GExp, which enables robots to explore and learn autonomously without human intervention. To achieve this goal, we devise modules including self-exploration, knowledge-base-building, and close-loop feedback based on foundation models. Inspired by the way that infants interact with the world, GExp encourages robots to understand and explore the environment with a series of self-generated tasks. During the process of exploration, the robot will acquire skills from beneficial experiences that are useful in the future. GExp provides robots with the ability to solve complex tasks through self-exploration. GExp work is independent of prior interactive knowledge and human intervention, allowing it to adapt directly to different scenarios, unlike previous studies that provided in-context examples as few-shot learning. In addition, we propose a workflow of deploying the real-world robot system with self-learned skills as an embodied assistant.
Optimizing Trading Strategies in Quantitative Markets using Multi-Agent Reinforcement Learning
Zhang, Hengxi, Shi, Zhendong, Hu, Yuanquan, Ding, Wenbo, Kuruoglu, Ercan E., Zhang, Xiao-Ping
Quantitative markets are characterized by swift dynamics and abundant uncertainties, making the pursuit of profit-driven stock trading actions inherently challenging. Within this context, reinforcement learning (RL), which operates on a reward-centric mechanism for optimal control, has surfaced as a potentially effective solution to the intricate financial decision-making conundrums presented. This paper delves into the fusion of two established financial trading strategies, namely the constant proportion portfolio insurance (CPPI) and the time-invariant portfolio protection (TIPP), with the multi-agent deep deterministic policy gradient (MADDPG) framework. As a result, we introduce two novel multi-agent RL (MARL) methods, CPPI-MADDPG and TIPP-MADDPG, tailored for probing strategic trading within quantitative markets. To validate these innovations, we implemented them on a diverse selection of 100 real-market shares. Our empirical findings reveal that the CPPI-MADDPG and TIPP-MADDPG strategies consistently outpace their traditional counterparts, affirming their efficacy in the realm of quantitative trading.
DualTeacher: Bridging Coexistence of Unlabelled Classes for Semi-supervised Incremental Object Detection
Yuan, Ziqi, Wang, Liyuan, Ding, Wenbo, Zhang, Xingxing, Zhong, Jiachen, Ai, Jianyong, Li, Jianmin, Zhu, Jun
In real-world applications, an object detector often encounters object instances from new classes and needs to accommodate them effectively. Previous work formulated this critical problem as incremental object detection (IOD), which assumes the object instances of new classes to be fully annotated in incremental data. However, as supervisory signals are usually rare and expensive, the supervised IOD may not be practical for implementation. In this work, we consider a more realistic setting named semi-supervised IOD (SSIOD), where the object detector needs to learn new classes incrementally from a few labelled data and massive unlabelled data without catastrophic forgetting of old classes. A commonly-used strategy for supervised IOD is to encourage the current model (as a student) to mimic the behavior of the old model (as a teacher), but it generally fails in SSIOD because a dominant number of object instances from old and new classes are coexisting and unlabelled, with the teacher only recognizing a fraction of them. Observing that learning only the classes of interest tends to preclude detection of other classes, we propose to bridge the coexistence of unlabelled classes by constructing two teacher models respectively for old and new classes, and using the concatenation of their predictions to instruct the student. This approach is referred to as DualTeacher, which can serve as a strong baseline for SSIOD with limited resource overhead and no extra hyperparameters. We build various benchmarks for SSIOD and perform extensive experiments to demonstrate the superiority of our approach (e.g., the performance lead is up to 18.28 AP on MS-COCO). Our code is available at \url{https://github.com/chuxiuhong/DualTeacher}.
Every Parameter Matters: Ensuring the Convergence of Federated Learning with Dynamic Heterogeneous Models Reduction
Zhou, Hanhan, Lan, Tian, Venkataramani, Guru, Ding, Wenbo
Cross-device Federated Learning (FL) faces significant challenges where low-end clients that could potentially make unique contributions are excluded from training large models due to their resource bottlenecks. Recent research efforts have focused on model-heterogeneous FL, by extracting reduced-size models from the global model and applying them to local clients accordingly. Despite the empirical success, general theoretical guarantees of convergence on this method remain an open question. This paper presents a unifying framework for heterogeneous FL algorithms with online model extraction and provides a general convergence analysis for the first time. In particular, we prove that under certain sufficient conditions and for both IID and non-IID data, these algorithms converge to a stationary point of standard FL for general smooth cost functions. Moreover, we introduce the concept of minimum coverage index, together with model reduction noise, which will determine the convergence of heterogeneous federated learning, and therefore we advocate for a holistic approach that considers both factors to enhance the efficiency of heterogeneous federated learning.
AQUILA: Communication Efficient Federated Learning with Adaptive Quantization in Device Selection Strategy
Zhao, Zihao, Mao, Yuzhu, Shi, Zhenpeng, Liu, Yang, Lan, Tian, Ding, Wenbo, Zhang, Xiao-Ping
The widespread adoption of Federated Learning (FL), a privacy-preserving distributed learning methodology, has been impeded by the challenge of high communication overheads, typically arising from the transmission of large-scale models. Existing adaptive quantization methods, designed to mitigate these overheads, operate under the impractical assumption of uniform device participation in every training round. Additionally, these methods are limited in their adaptability due to the necessity of manual quantization level selection and often overlook biases inherent in local devices' data, thereby affecting the robustness of the global model. In response, this paper introduces AQUILA (adaptive quantization in device selection strategy), a novel adaptive framework devised to effectively handle these issues, enhancing the efficiency and robustness of FL. AQUILA integrates a sophisticated device selection method that prioritizes the quality and usefulness of device updates. Utilizing the exact global model stored by devices, it enables a more precise device selection criterion, reduces model deviation, and limits the need for hyperparameter adjustments. Furthermore, AQUILA presents an innovative quantization criterion, optimized to improve communication efficiency while assuring model convergence. Our experiments demonstrate that AQUILA significantly decreases communication costs compared to existing methods, while maintaining comparable model performance across diverse non-homogeneous FL settings, such as Non-IID data and heterogeneous model architectures.
Inclusive Data Representation in Federated Learning: A Novel Approach Integrating Textual and Visual Prompt
Zhao, Zihao, Shi, Zhenpeng, Liu, Yang, Ding, Wenbo
Federated Learning (FL) is often impeded by communication overhead issues. Prompt tuning, as a potential solution, has been introduced to only adjust a few trainable parameters rather than the whole model. However, current single-modality prompt tuning approaches fail to comprehensively portray local clients' data. To overcome this limitation, we present Twin Prompt Federated learning (TPFL), a pioneering solution that integrates both visual and textual modalities, ensuring a more holistic representation of local clients' data characteristics. Furthermore, in order to tackle the data heterogeneity issues, we introduce the Augmented TPFL (ATPFL) employing the contrastive learning to TPFL, which not only enhances the global knowledge acquisition of client models but also fosters the development of robust, compact models. The effectiveness of TPFL and ATPFL is substantiated by our extensive evaluations, consistently showing superior performance compared to all baselines.
Federated PAC-Bayesian Learning on Non-IID data
Zhao, Zihao, Liu, Yang, Ding, Wenbo, Zhang, Xiao-Ping
Existing research has either adapted the Probably Approximately Correct (PAC) Bayesian framework for federated learning (FL) or used information-theoretic PAC-Bayesian bounds while introducing their theorems, but few considering the non-IID challenges in FL. Our work presents the first non-vacuous federated PAC-Bayesian bound tailored for non-IID local data. This bound assumes unique prior knowledge for each client and variable aggregation weights. We also introduce an objective function and an innovative Gibbs-based algorithm for the optimization of the derived bound. The results are validated on real-world datasets.
WSTac: Interactive Surface Perception based on Whisker-Inspired and Self-Illuminated Vision-Based Tactile Sensor
Lei, Kai Chong, Sou, Kit Wa, Chan, Wang Sing, Yan, Jiayi, Ping, Siqi, Peng, Dengfeng, Ding, Wenbo, Zhang, Xiao-Ping
Modern Visual-Based Tactile Sensors (VBTSs) use cost-effective cameras to track elastomer deformation, but struggle with ambient light interference. Solutions typically involve using internal LEDs and blocking external light, thus adding complexity. Creating a VBTS resistant to ambient light with just a camera and an elastomer remains a challenge. In this work, we introduce WStac, a self-illuminating VBTS comprising a mechanoluminescence (ML) whisker elastomer, camera, and 3D printed parts. The ML whisker elastomer, inspired by the touch sensitivity of vibrissae, offers both light isolation and high ML intensity under stress, thereby removing the necessity for additional LED modules. With the incorporation of machine learning, the sensor effectively utilizes the dynamic contact variations of 25 whiskers to successfully perform tasks like speed regression, directional identification, and texture classification. Videos are available at: https://sites.google.com/view/wstac/.
Cooperative Multi-Type Multi-Agent Deep Reinforcement Learning for Resource Management in Space-Air-Ground Integrated Networks
Zhang, Hengxi, Tang, Huaze, Ding, Wenbo, Zhang, Xiao-Ping
The Space-Air-Ground Integrated Network (SAGIN), integrating heterogeneous devices including low earth orbit (LEO) satellites, unmanned aerial vehicles (UAVs), and ground users (GUs), holds significant promise for advancing smart city applications. However, resource management of the SAGIN is a challenge requiring urgent study in that inappropriate resource management will cause poor data transmission, and hence affect the services in smart cities. In this paper, we develop a comprehensive SAGIN system that encompasses five distinct communication links and propose an efficient cooperative multi-type multi-agent deep reinforcement learning (CMT-MARL) method to address the resource management issue. The experimental results highlight the efficacy of the proposed CMT-MARL, as evidenced by key performance indicators such as the overall transmission rate and transmission success rate. These results underscore the potential value and feasibility of future implementation of the SAGIN.
Visuotactile Sensor Enabled Pneumatic Device Towards Compliant Oropharyngeal Swab Sampling
Li, Shoujie, He, Mingshan, Ding, Wenbo, Ye, Linqi, Wang, Xueqian, Tan, Junbo, Yuan, Jinqiu, Zhang, Xiao-Ping
Manual oropharyngeal (OP) swab sampling is an intensive and risky task. In this article, a novel OP swab sampling device of low cost and high compliance is designed by combining the visuo-tactile sensor and the pneumatic actuator-based gripper. Here, a concave visuo-tactile sensor called CoTac is first proposed to address the problems of high cost and poor reliability of traditional multi-axis force sensors. Besides, by imitating the doctor's fingers, a soft pneumatic actuator with a rigid skeleton structure is designed, which is demonstrated to be reliable and safe via finite element modeling and experiments. Furthermore, we propose a sampling method that adopts a compliant control algorithm based on the adaptive virtual force to enhance the safety and compliance of the swab sampling process. The effectiveness of the device has been verified through sampling experiments as well as in vivo tests, indicating great application potential. The cost of the device is around 30 US dollars and the total weight of the functional part is less than 0.1 kg, allowing the device to be rapidly deployed on various robotic arms. Videos, hardware, and source code are available at: https://sites.google.com/view/swab-sampling/.