Goto

Collaborating Authors

 Ding, Meng


Improved Rates of Differentially Private Nonconvex-Strongly-Concave Minimax Optimization

arXiv.org Artificial Intelligence

In this paper, we study the problem of (finite sum) minimax optimization in the Differential Privacy (DP) model. Unlike most of the previous studies on the (strongly) convex-concave settings or loss functions satisfying the Polyak-Lojasiewicz condition, here we mainly focus on the nonconvex-strongly-concave one, which encapsulates many models in deep learning such as deep AUC maximization. Specifically, we first analyze a DP version of Stochastic Gradient Descent Ascent (SGDA) and show that it is possible to get a DP estimator whose $l_2$-norm of the gradient for the empirical risk function is upper bounded by $\tilde{O}(\frac{d^{1/4}}{({n\epsilon})^{1/2}})$, where $d$ is the model dimension and $n$ is the sample size. We then propose a new method with less gradient noise variance and improve the upper bound to $\tilde{O}(\frac{d^{1/3}}{(n\epsilon)^{2/3}})$, which matches the best-known result for DP Empirical Risk Minimization with non-convex loss. We also discussed several lower bounds of private minimax optimization. Finally, experiments on AUC maximization, generative adversarial networks, and temporal difference learning with real-world data support our theoretical analysis.


Nearly Optimal Differentially Private ReLU Regression

arXiv.org Machine Learning

In this paper, we investigate one of the most fundamental nonconvex learning problems, ReLU regression, in the Differential Privacy (DP) model. Previous studies on private ReLU regression heavily rely on stringent assumptions, such as constant bounded norms for feature vectors and labels. We relax these assumptions to a more standard setting, where data can be i.i.d. sampled from $O(1)$-sub-Gaussian distributions. We first show that when $\varepsilon = \tilde{O}(\sqrt{\frac{1}{N}})$ and there is some public data, it is possible to achieve an upper bound of $\Tilde{O}(\frac{d^2}{N^2 \varepsilon^2})$ for the excess population risk in $(\epsilon, \delta)$-DP, where $d$ is the dimension and $N$ is the number of data samples. Moreover, we relax the requirement of $\epsilon$ and public data by proposing and analyzing a one-pass mini-batch Generalized Linear Model Perceptron algorithm (DP-MBGLMtron). Additionally, using the tracing attack argument technique, we demonstrate that the minimax rate of the estimation error for $(\varepsilon, \delta)$-DP algorithms is lower bounded by $\Omega(\frac{d^2}{N^2 \varepsilon^2})$. This shows that DP-MBGLMtron achieves the optimal utility bound up to logarithmic factors. Experiments further support our theoretical results.


Towards User-level Private Reinforcement Learning with Human Feedback

arXiv.org Artificial Intelligence

Reinforcement Learning with Human Feedback (RLHF) has emerged as an influential technique, enabling the alignment of large language models (LLMs) with human preferences. Despite the promising potential of RLHF, how to protect user preference privacy has become a crucial issue. Most previous work has focused on using differential privacy (DP) to protect the privacy of individual data. However, they have concentrated primarily on item-level privacy protection and have unsatisfactory performance for user-level privacy, which is more common in RLHF. This study proposes a novel framework, AUP-RLHF, which integrates user-level label DP into RLHF. We first show that the classical random response algorithm, which achieves an acceptable performance in item-level privacy, leads to suboptimal utility when in the user-level settings. We then establish a lower bound for the user-level label DP-RLHF and develop the AUP-RLHF algorithm, which guarantees $(\varepsilon, \delta)$ user-level privacy and achieves an improved estimation error. Experimental results show that AUP-RLHF outperforms existing baseline methods in sentiment generation and summarization tasks, achieving a better privacy-utility trade-off.


Evaluating Data Influence in Meta Learning

arXiv.org Artificial Intelligence

As one of the most fundamental models, meta learning aims to effectively address few-shot learning challenges. However, it still faces significant issues related to the training data, such as training inefficiencies due to numerous low-contribution tasks in large datasets and substantial noise from incorrect labels. Thus, training data attribution methods are needed for meta learning. However, the dual-layer structure of mata learning complicates the modeling of training data contributions because of the interdependent influence between meta-parameters and task-specific parameters, making existing data influence evaluation tools inapplicable or inaccurate. To address these challenges, based on the influence function, we propose a general data attribution evaluation framework for meta-learning within the bilevel optimization framework. Our approach introduces task influence functions (task-IF) and instance influence functions (instance-IF) to accurately assess the impact of specific tasks and individual data points in closed forms. This framework comprehensively models data contributions across both the inner and outer training processes, capturing the direct effects of data points on meta-parameters as well as their indirect influence through task-specific parameters. We also provide several strategies to enhance computational efficiency and scalability. Experimental results demonstrate the framework's effectiveness in training data evaluation via several downstream tasks.


TTVD: Towards a Geometric Framework for Test-Time Adaptation Based on Voronoi Diagram

arXiv.org Artificial Intelligence

Deep learning models often struggle with generalization when deploying on real-world data, due to the common distributional shift to the training data. Test-time adaptation (TTA) is an emerging scheme used at inference time to address this issue. In TTA, models are adapted online at the same time when making predictions to test data. Neighbor-based approaches have gained attention recently, where prototype embeddings provide location information to alleviate the feature shift between training and testing data. However, due to their inherit limitation of simplicity, they often struggle to learn useful patterns and encounter performance degradation. To confront this challenge, we study the TTA problem from a geometric point of view. We first reveal that the underlying structure of neighbor-based methods aligns with the Voronoi Diagram, a classical computational geometry model for space partitioning. Building on this observation, we propose the Test-Time adjustment by Voronoi Diagram guidance (TTVD), a novel framework that leverages the benefits of this geometric property. Specifically, we explore two key structures: 1) Cluster-induced Voronoi Diagram (CIVD): This integrates the joint contribution of self-supervision and entropy-based methods to provide richer information. 2) Power Diagram (PD): A generalized version of the Voronoi Diagram that refines partitions by assigning weights to each Voronoi cell. Our experiments under rigid, peer-reviewed settings on CIFAR-10-C, CIFAR-100-C, ImageNet-C, and ImageNet-R shows that TTVD achieves remarkable improvements compared to state-of-the-art methods. Moreover, extensive experimental results also explore the effects of batch size and class imbalance, which are two scenarios commonly encountered in real-world applications. These analyses further validate the robustness and adaptability of our proposed framework.


Why Fine-Tuning Struggles with Forgetting in Machine Unlearning? Theoretical Insights and a Remedial Approach

arXiv.org Machine Learning

Machine Unlearning has emerged as a significant area of research, focusing on 'removing' specific subsets of data from a trained model. Fine-tuning (FT) methods have become one of the fundamental approaches for approximating unlearning, as they effectively retain model performance. However, it is consistently observed that naive FT methods struggle to forget the targeted data. In this paper, we present the first theoretical analysis of FT methods for machine unlearning within a linear regression framework, providing a deeper exploration of this phenomenon. We investigate two scenarios with distinct features and overlapping features. Our findings reveal that FT models can achieve zero remaining loss yet fail to forget the forgetting data, unlike golden models (trained from scratch without the forgetting data). This analysis reveals that naive FT methods struggle with forgetting because the pretrained model retains information about the forgetting data, and the fine-tuning process has no impact on this retained information. To address this issue, we first propose a theoretical approach to mitigate the retention of forgetting data in the pretrained model. Our analysis shows that removing the forgetting data's influence allows FT models to match the performance of the golden model. Building on this insight, we introduce a discriminative regularization term to practically reduce the unlearning loss gap between the fine-tuned model and the golden model. Our experiments on both synthetic and real-world datasets validate these theoretical insights and demonstrate the effectiveness of the proposed regularization method.


Understanding Forgetting in Continual Learning with Linear Regression

arXiv.org Artificial Intelligence

Continual learning, focused on sequentially learning multiple tasks, has gained significant attention recently. Despite the tremendous progress made in the past, the theoretical understanding, especially factors contributing to catastrophic forgetting, remains relatively unexplored. In this paper, we provide a general theoretical analysis of forgetting in the linear regression model via Stochastic Gradient Descent (SGD) applicable to both underparameterized and overparameterized regimes. Our theoretical framework reveals some interesting insights into the intricate relationship between task sequence and algorithmic parameters, an aspect not fully captured in previous studies due to their restrictive assumptions. Specifically, we demonstrate that, given a sufficiently large data size, the arrangement of tasks in a sequence, where tasks with larger eigenvalues in their population data covariance matrices are trained later, tends to result in increased forgetting. Additionally, our findings highlight that an appropriate choice of step size will help mitigate forgetting in both underparameterized and overparameterized settings. To validate our theoretical analysis, we conducted simulation experiments on both linear regression models and Deep Neural Networks (DNNs). Results from these simulations substantiate our theoretical findings.


Improved Analysis of Sparse Linear Regression in Local Differential Privacy Model

arXiv.org Artificial Intelligence

In this paper, we revisit the problem of sparse linear regression in the local differential privacy (LDP) model. Existing research in the non-interactive and sequentially local models has focused on obtaining the lower bounds for the case where the underlying parameter is $1$-sparse, and extending such bounds to the more general $k$-sparse case has proven to be challenging. Moreover, it is unclear whether efficient non-interactive LDP (NLDP) algorithms exist. To address these issues, we first consider the problem in the $\epsilon$ non-interactive LDP model and provide a lower bound of $\Omega(\frac{\sqrt{dk\log d}}{\sqrt{n}\epsilon})$ on the $\ell_2$-norm estimation error for sub-Gaussian data, where $n$ is the sample size and $d$ is the dimension of the space. We propose an innovative NLDP algorithm, the very first of its kind for the problem. As a remarkable outcome, this algorithm also yields a novel and highly efficient estimator as a valuable by-product. Our algorithm achieves an upper bound of $\tilde{O}({\frac{d\sqrt{k}}{\sqrt{n}\epsilon}})$ for the estimation error when the data is sub-Gaussian, which can be further improved by a factor of $O(\sqrt{d})$ if the server has additional public but unlabeled data. For the sequentially interactive LDP model, we show a similar lower bound of $\Omega({\frac{\sqrt{dk}}{\sqrt{n}\epsilon}})$. As for the upper bound, we rectify a previous method and show that it is possible to achieve a bound of $\tilde{O}(\frac{k\sqrt{d}}{\sqrt{n}\epsilon})$. Our findings reveal fundamental differences between the non-private case, central DP model, and local DP model in the sparse linear regression problem.


On Stability and Generalization of Bilevel Optimization Problem

arXiv.org Artificial Intelligence

(Stochastic) bilevel optimization is a frequently encountered problem in machine learning with a wide range of applications such as meta-learning, hyper-parameter optimization, and reinforcement learning. Most of the existing studies on this problem only focused on analyzing the convergence or improving the convergence rate, while little effort has been devoted to understanding its generalization behaviors. In this paper, we conduct a thorough analysis on the generalization of first-order (gradient-based) methods for the bilevel optimization problem. We first establish a fundamental connection between algorithmic stability and generalization error in different forms and give a high probability generalization bound which improves the previous best one from $\bigO(\sqrt{n})$ to $\bigO(\log n)$, where $n$ is the sample size. We then provide the first stability bounds for the general case where both inner and outer level parameters are subject to continuous update, while existing work allows only the outer level parameter to be updated. Our analysis can be applied in various standard settings such as strongly-convex-strongly-convex (SC-SC), convex-convex (C-C), and nonconvex-nonconvex (NC-NC). Our analysis for the NC-NC setting can also be extended to a particular nonconvex-strongly-convex (NC-SC) setting that is commonly encountered in practice. Finally, we corroborate our theoretical analysis and demonstrate how iterations can affect the generalization error by experiments on meta-learning and hyper-parameter optimization.


TransBTS: Multimodal Brain Tumor Segmentation Using Transformer

arXiv.org Artificial Intelligence

Transformer, which can benefit from global (long-range) information modeling using self-attention mechanisms, has been successful in natural language processing and 2D image classification recently. However, both local and global features are crucial for dense prediction tasks, especially for 3D medical image segmentation. In this paper, we for the first time exploit Transformer in 3D CNN for MRI Brain Tumor Segmentation and propose a novel network named TransBTS based on the encoder-decoder structure. To capture the local 3D context information, the encoder first utilizes 3D CNN to extract the volumetric spatial feature maps. Meanwhile, the feature maps are reformed elaborately for tokens that are fed into Transformer for global feature modeling. The decoder leverages the features embedded by Transformer and performs progressive upsampling to predict the detailed segmentation map. Experimental results on the BraTS 2019 dataset show that TransBTS outperforms state-of-the-art methods for brain tumor segmentation on 3D MRI scans. Code is available at https://github.com/Wenxuan-1119/