Plotting

 Ding, Kaize


Federated Few-shot Learning

arXiv.org Artificial Intelligence

Federated Learning (FL) enables multiple clients to collaboratively learn a machine learning model without exchanging their own local data. In this way, the server can exploit the computational power of all clients and train the model on a larger set of data samples among all clients. Although such a mechanism is proven to be effective in various fields, existing works generally assume that each client preserves sufficient data for training. In practice, however, certain clients may only contain a limited number of samples (i.e., few-shot samples). For example, the available photo data taken by a specific user with a new mobile device is relatively rare. In this scenario, existing FL efforts typically encounter a significant performance drop on these clients. Therefore, it is urgent to develop a few-shot model that can generalize to clients with limited data under the FL scenario. In this paper, we refer to this novel problem as federated few-shot learning. Nevertheless, the problem remains challenging due to two major reasons: the global data variance among clients (i.e., the difference in data distributions among clients) and the local data insufficiency in each client (i.e., the lack of adequate local data for training). To overcome these two challenges, we propose a novel federated few-shot learning framework with two separately updated models and dedicated training strategies to reduce the adverse impact of global data variance and local data insufficiency. Extensive experiments on four prevalent datasets that cover news articles and images validate the effectiveness of our framework compared with the state-of-the-art baselines. Our code is provided at https://github.com/SongW-SW/F2L.


Uncertainty-Aware Robust Learning on Noisy Graphs

arXiv.org Artificial Intelligence

Graph neural networks have shown impressive capabilities in solving various graph learning tasks, particularly excelling in node classification. However, their effectiveness can be hindered by the challenges arising from the widespread existence of noisy measurements associated with the topological or nodal information present in real-world graphs. These inaccuracies in observations can corrupt the crucial patterns within the graph data, ultimately resulting in undesirable performance in practical applications. To address these issues, this paper proposes a novel uncertainty-aware graph learning framework motivated by distributionally robust optimization. Specifically, we use a graph neural network-based encoder to embed the node features and find the optimal node embeddings by minimizing the worst-case risk through a minimax formulation. Such an uncertainty-aware learning process leads to improved node representations and a more robust graph predictive model that effectively mitigates the impact of uncertainty arising from data noise. Our experimental result shows that the proposed framework achieves superior predictive performance compared to the state-of-the-art baselines under various noisy settings.


Characterizing Long-Tail Categories on Graphs

arXiv.org Artificial Intelligence

Long-tail data distributions are prevalent in many real-world networks, including financial transaction networks, e-commerce networks, and collaboration networks. Despite the success of recent developments, the existing works mainly focus on debiasing the machine learning models via graph augmentation or objective reweighting. However, there is limited literature that provides a theoretical tool to characterize the behaviors of long-tail categories on graphs and understand the generalization performance in real scenarios. To bridge this gap, we propose the first generalization bound for long-tail classification on graphs by formulating the problem in the fashion of multi-task learning, i.e., each task corresponds to the prediction of one particular category. Our theoretical results show that the generalization performance of long-tail classification is dominated by the range of losses across all tasks and the total number of tasks. Building upon the theoretical findings, we propose a novel generic framework Tail2Learn to improve the performance of long-tail categories on graphs. In particular, we start with a hierarchical task grouping module that allows label-limited classes to benefit from the relevant information shared by other classes; then, we further design a balanced contrastive learning module to balance the gradient contributions of head and tail classes. Finally, extensive experiments on various real-world datasets demonstrate the effectiveness of Tail2Learn in capturing long-tail categories on graphs.


Learning Strong Graph Neural Networks with Weak Information

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have exhibited impressive performance in many graph learning tasks. Nevertheless, the performance of GNNs can deteriorate when the input graph data suffer from weak information, i.e., incomplete structure, incomplete features, and insufficient labels. Most prior studies, which attempt to learn from the graph data with a specific type of weak information, are far from effective in dealing with the scenario where diverse data deficiencies exist and mutually affect each other. To fill the gap, in this paper, we aim to develop an effective and principled approach to the problem of graph learning with weak information (GLWI). Based on the findings from our empirical analysis, we derive two design focal points for solving the problem of GLWI, i.e., enabling long-range propagation in GNNs and allowing information propagation to those stray nodes isolated from the largest connected component. Accordingly, we propose D$^2$PT, a dual-channel GNN framework that performs long-range information propagation not only on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities. We further develop a prototype contrastive alignment algorithm that aligns the class-level prototypes learned from two channels, such that the two different information propagation processes can mutually benefit from each other and the finally learned model can well handle the GLWI problem. Extensive experiments on eight real-world benchmark datasets demonstrate the effectiveness and efficiency of our proposed methods in various GLWI scenarios.


HyperFormer: Learning Expressive Sparse Feature Representations via Hypergraph Transformer

arXiv.org Artificial Intelligence

Learning expressive representations for high-dimensional yet sparse features has been a longstanding problem in information retrieval. Though recent deep learning methods can partially solve the problem, they often fail to handle the numerous sparse features, particularly those tail feature values with infrequent occurrences in the training data. Worse still, existing methods cannot explicitly leverage the correlations among different instances to help further improve the representation learning on sparse features since such relational prior knowledge is not provided. To address these challenges, in this paper, we tackle the problem of representation learning on feature-sparse data from a graph learning perspective. Specifically, we propose to model the sparse features of different instances using hypergraphs where each node represents a data instance and each hyperedge denotes a distinct feature value. By passing messages on the constructed hypergraphs based on our Hypergraph Transformer (HyperFormer), the learned feature representations capture not only the correlations among different instances but also the correlations among features. Our experiments demonstrate that the proposed approach can effectively improve feature representation learning on sparse features.


MetaGAD: Learning to Meta Transfer for Few-shot Graph Anomaly Detection

arXiv.org Artificial Intelligence

Graph anomaly detection has long been an important problem in various domains pertaining to information security such as financial fraud, social spam, network intrusion, etc. The majority of existing methods are performed in an unsupervised manner, as labeled anomalies in a large scale are often too expensive to acquire. However, the identified anomalies may turn out to be data noises or uninteresting data instances due to the lack of prior knowledge on the anomalies. In realistic scenarios, it is often feasible to obtain limited labeled anomalies, which have great potential to advance graph anomaly detection. However, the work exploring limited labeled anomalies and a large amount of unlabeled nodes in graphs to detect anomalies is rather limited. Therefore, in this paper, we study a novel problem of few-shot graph anomaly detection. We propose a new framework MetaGAD to learn to meta-transfer the knowledge between unlabeled and labeled nodes for graph anomaly detection. Experimental results on six real-world datasets with synthetic anomalies and "organic" anomalies (available in the dataset) demonstrate the effectiveness of the proposed approach in detecting anomalies with limited labeled anomalies.


Few-shot Node Classification with Extremely Weak Supervision

arXiv.org Artificial Intelligence

Few-shot node classification aims at classifying nodes with limited labeled nodes as references. Recent few-shot node classification methods typically learn from classes with abundant labeled nodes (i.e., meta-training classes) and then generalize to classes with limited labeled nodes (i.e., meta-test classes). Nevertheless, on real-world graphs, it is usually difficult to obtain abundant labeled nodes for many classes. In practice, each meta-training class can only consist of several labeled nodes, known as the extremely weak supervision problem. In few-shot node classification, with extremely limited labeled nodes for meta-training, the generalization gap between meta-training and meta-test will become larger and thus lead to suboptimal performance. To tackle this issue, we study a novel problem of few-shot node classification with extremely weak supervision and propose a principled framework X-FNC under the prevalent meta-learning framework. Specifically, our goal is to accumulate meta-knowledge across different meta-training tasks with extremely weak supervision and generalize such knowledge to meta-test tasks. To address the challenges resulting from extremely scarce labeled nodes, we propose two essential modules to obtain pseudo-labeled nodes as extra references and effectively learn from extremely limited supervision information. We further conduct extensive experiments on four node classification datasets with extremely weak supervision to validate the superiority of our framework compared to the state-of-the-art baselines.


Nothing Stands Alone: Relational Fake News Detection with Hypergraph Neural Networks

arXiv.org Artificial Intelligence

Nowadays, fake news easily propagates through online social networks and becomes a grand threat to individuals and society. Assessing the authenticity of news is challenging due to its elaborately fabricated contents, making it difficult to obtain large-scale annotations for fake news data. Due to such data scarcity issues, detecting fake news tends to fail and overfit in the supervised setting. Recently, graph neural networks (GNNs) have been adopted to leverage the richer relational information among both labeled and unlabeled instances. Despite their promising results, they are inherently focused on pairwise relations between news, which can limit the expressive power for capturing fake news that spreads in a group-level. For example, detecting fake news can be more effective when we better understand relations between news pieces shared among susceptible users. To address those issues, we propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism. Experiments based on two benchmark datasets show that our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.


Transductive Linear Probing: A Novel Framework for Few-Shot Node Classification

arXiv.org Artificial Intelligence

Few-shot node classification is tasked to provide accurate predictions for nodes from novel classes with only few representative labeled nodes. This problem has drawn tremendous attention for its projection to prevailing real-world applications, such as product categorization for newly added commodity categories on an E-commerce platform with scarce records or diagnoses for rare diseases on a patient similarity graph. To tackle such challenging label scarcity issues in the non-Euclidean graph domain, meta-learning has become a successful and predominant paradigm. More recently, inspired by the development of graph self-supervised learning, transferring pretrained node embeddings for few-shot node classification could be a promising alternative to meta-learning but remains unexposed. In this work, we empirically demonstrate the potential of an alternative framework, \textit{Transductive Linear Probing}, that transfers pretrained node embeddings, which are learned from graph contrastive learning methods. We further extend the setting of few-shot node classification from standard fully supervised to a more realistic self-supervised setting, where meta-learning methods cannot be easily deployed due to the shortage of supervision from training classes. Surprisingly, even without any ground-truth labels, transductive linear probing with self-supervised graph contrastive pretraining can outperform the state-of-the-art fully supervised meta-learning based methods under the same protocol. We hope this work can shed new light on few-shot node classification problems and foster future research on learning from scarcely labeled instances on graphs.


Toward Robust Graph Semi-Supervised Learning against Extreme Data Scarcity

arXiv.org Artificial Intelligence

The success of graph neural networks on graph-based web mining highly relies on abundant human-annotated data, which is laborious to obtain in practice. When only few labeled nodes are available, how to improve their robustness is a key to achieve replicable and sustainable graph semi-supervised learning. Though self-training has been shown to be powerful for semi-supervised learning, its application on graph-structured data may fail because (1) larger receptive fields are not leveraged to capture long-range node interactions, which exacerbates the difficulty of propagating feature-label patterns from labeled nodes to unlabeled nodes; and (2) limited labeled data makes it challenging to learn well-separated decision boundaries for different node classes without explicitly capturing the underlying semantic structure. To address the challenges of capturing informative structural and semantic knowledge, we propose a new graph data augmentation framework, AGST (Augmented Graph Self-Training), which is built with two new (i.e., structural and semantic) augmentation modules on top of a decoupled GST backbone. In this work, we investigate whether this novel framework can learn a robust graph predictive model under the low-data context. We conduct comprehensive evaluations on semi-supervised node classification under different scenarios of limited labeled-node data. The experimental results demonstrate the unique contributions of the novel data augmentation framework for node classification with few labeled data.