Ding, Haipeng
Exploring the Potential of Large Language Models as Predictors in Dynamic Text-Attributed Graphs
Lei, Runlin, Ji, Jiarui, Ding, Haipeng, Yi, Lu, Wei, Zhewei, Liu, Yongchao, Hong, Chuntao
With the rise of large language models (LLMs), there has been growing interest in Graph Foundation Models (GFMs) for graph-based tasks. By leveraging LLMs as predictors, GFMs have demonstrated impressive generalizability across various tasks and datasets. However, existing research on LLMs as predictors has predominantly focused on static graphs, leaving their potential in dynamic graph prediction unexplored. In this work, we pioneer using LLMs for predictive tasks on dynamic graphs. We identify two key challenges: the constraints imposed by context length when processing large-scale historical data and the significant variability in domain characteristics, both of which complicate the development of a unified predictor. To address these challenges, we propose the GraphAgent-Dynamic (GAD) Framework, a multi-agent system that leverages collaborative LLMs. In contrast to using a single LLM as the predictor, GAD incorporates global and local summary agents to generate domain-specific knowledge, enhancing its transferability across domains. Additionally, knowledge reflection agents enable adaptive updates to GAD's knowledge, maintaining a unified and self-consistent architecture. In experiments, GAD demonstrates performance comparable to or even exceeds that of full-supervised graph neural networks without dataset-specific training. Finally, to enhance the task-specific performance of LLM-based predictors, we discuss potential improvements, such as dataset-specific fine-tuning to LLMs. By developing tailored strategies for different tasks, we provide new insights for the future design of LLM-based predictors.
Large-Scale Spectral Graph Neural Networks via Laplacian Sparsification: Technical Report
Ding, Haipeng, Wei, Zhewei, Ye, Yuhang
Graph Neural Networks (GNNs) play a pivotal role in graph-based tasks for their proficiency in representation learning. Among the various GNN methods, spectral GNNs employing polynomial filters have shown promising performance on tasks involving both homophilous and heterophilous graph structures. However, The scalability of spectral GNNs on large graphs is limited because they learn the polynomial coefficients through multiple forward propagation executions during forward propagation. Existing works have attempted to scale up spectral GNNs by eliminating the linear layers on the input node features, a change that can disrupt end-to-end training, potentially impact performance, and become impractical with high-dimensional input features. To address the above challenges, we propose "Spectral Graph Neural Networks with Laplacian Sparsification (SGNN-LS)", a novel graph spectral sparsification method to approximate the propagation patterns of spectral GNNs. We prove that our proposed method generates Laplacian sparsifiers that can approximate both fixed and learnable polynomial filters with theoretical guarantees. Our method allows the application of linear layers on the input node features, enabling end-to-end training as well as the handling of raw text features. We conduct an extensive experimental analysis on datasets spanning various graph scales and properties to demonstrate the superior efficiency and effectiveness of our method. The results show that our method yields superior results in comparison with the corresponding approximated base models, especially on dataset Ogbn-papers100M(111M nodes, 1.6B edges) and MAG-scholar-C (2.8M features).
Neural-Symbolic Reasoning on Knowledge Graphs
Zhang, Jing, Chen, Bo, Zhang, Lingxi, Ke, Xirui, Ding, Haipeng
Knowledge graph reasoning is the fundamental component to support machine learning applications such as information extraction, information retrieval and recommendation. Since knowledge graph can be viewed as the discrete symbolic representations of knowledge, reasoning on knowledge graphs can naturally leverage the symbolic techniques. However, symbolic reasoning is intolerant of the ambiguous and noisy data. On the contrary, the recent advances of deep learning promote neural reasoning on knowledge graphs, which is robust to the ambiguous and noisy data, but lacks interpretability compared to symbolic reasoning. Considering the advantages and disadvantages of both methodologies, recent efforts have been made on combining the two reasoning methods. In this survey, we take a thorough look at the development of the symbolic reasoning, neural reasoning and the neural-symbolic reasoning on knowledge graphs. We survey two specific reasoning tasks, knowledge graph completion and question answering on knowledge graphs, and explain them in a unified reasoning framework. We also briefly discuss the future directions for knowledge graph reasoning.