Goto

Collaborating Authors

 Ding, Chenlu


Addressing Delayed Feedback in Conversion Rate Prediction via Influence Functions

arXiv.org Artificial Intelligence

In the realm of online digital advertising, conversion rate (CVR) prediction plays a pivotal role in maximizing revenue under cost-per-conversion (CPA) models, where advertisers are charged only when users complete specific actions, such as making a purchase. A major challenge in CVR prediction lies in the delayed feedback problem-conversions may occur hours or even weeks after initial user interactions. This delay complicates model training, as recent data may be incomplete, leading to biases and diminished performance. Although existing methods attempt to address this issue, they often fall short in adapting to evolving user behaviors and depend on auxiliary models, which introduces computational inefficiencies and the risk of model inconsistency. In this work, we propose an Influence Function-empowered framework for Delayed Feedback Modeling (IF-DFM). IF-DFM leverages influence functions to estimate how newly acquired and delayed conversion data impact model parameters, enabling efficient parameter updates without the need for full retraining. Additionally, we present a scalable algorithm that efficiently computes parameter updates by reframing the inverse Hessian-vector product as an optimization problem, striking a balance between computational efficiency and effectiveness. Extensive experiments on benchmark datasets demonstrate that IF-DFM consistently surpasses state-of-the-art methods, significantly enhancing both prediction accuracy and model adaptability.


Unified Parameter-Efficient Unlearning for LLMs

arXiv.org Artificial Intelligence

The advent of Large Language Models (LLMs) has revolutionized natural language processing, enabling advanced understanding and reasoning capabilities across a variety of tasks. Fine-tuning these models for specific domains, particularly through Parameter-Efficient Fine-Tuning (PEFT) strategies like LoRA, has become a prevalent practice due to its efficiency. However, this raises significant privacy and security concerns, as models may inadvertently retain and disseminate sensitive or undesirable information. To address these issues, we introduce a novel instance-wise unlearning framework, LLMEraser, which systematically categorizes unlearning tasks and applies precise parameter adjustments using influence functions. Unlike traditional unlearning techniques that are often limited in scope and require extensive retraining, LLMEraser is designed to handle a broad spectrum of unlearning tasks without compromising model performance. Extensive experiments on benchmark datasets demonstrate that LLMEraser excels in efficiently managing various unlearning scenarios while maintaining the overall integrity and efficacy of the models.