Goto

Collaborating Authors

 Dimitriadis, Dimitrios


Federated Multilingual Models for Medical Transcript Analysis

arXiv.org Artificial Intelligence

Federated Learning (FL) is a novel machine learning approach that allows the model trainer to access more data samples, by training the model across multiple decentralized data sources, while data access constraints are in place. Such trained models can achieve significantly higher performance beyond what can be done when trained on a single data source. As part of FL's promises, none of the training data is ever transmitted to any central location, ensuring that sensitive data remains local and private. These characteristics make FL perfectly suited for large-scale applications in healthcare, where a variety of compliance constraints restrict how data may be handled, processed, and stored. Despite the apparent benefits of federated learning, the heterogeneity in the local data distributions pose significant challenges, and such challenges are even more pronounced in the case of multilingual data providers. In this paper we present a federated learning system for training a large-scale multi-lingual model suitable for fine-tuning on downstream tasks such as medical entity tagging. Our work represents one of the first such production-scale systems, capable of training across multiple highly heterogeneous data providers, and achieving levels of accuracy that could not be otherwise achieved by using central training with public data. Finally, we show that the global model performance can be further improved by a training step performed locally.


Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout

arXiv.org Artificial Intelligence

Asynchronous learning protocols have regained attention lately, especially in the Federated Learning (FL) setup, where slower clients can severely impede the learning process. Herein, we propose \texttt{AsyncDrop}, a novel asynchronous FL framework that utilizes dropout regularization to handle device heterogeneity in distributed settings. Overall, \texttt{AsyncDrop} achieves better performance compared to state of the art asynchronous methodologies, while resulting in less communication and training time overheads. The key idea revolves around creating ``submodels'' out of the global model, and distributing their training to workers, based on device heterogeneity. We rigorously justify that such an approach can be theoretically characterized. We implement our approach and compare it against other asynchronous baselines, both by design and by adapting existing synchronous FL algorithms to asynchronous scenarios. Empirically, \texttt{AsyncDrop} reduces the communication cost and training time, while matching or improving the final test accuracy in diverse non-i.i.d. FL scenarios.


Sequence-level self-learning with multiple hypotheses

arXiv.org Artificial Intelligence

In this work, we develop new self-learning techniques with an attention-based sequence-to-sequence (seq2seq) model for automatic speech recognition (ASR). For untranscribed speech data, the hypothesis from an ASR system must be used as a label. However, the imperfect ASR result makes unsupervised learning difficult to consistently improve recognition performance especially in the case that multiple powerful teacher models are unavailable. In contrast to conventional unsupervised learning approaches, we adopt the \emph{multi-task learning} (MTL) framework where the $n$-th best ASR hypothesis is used as the label of each task. The seq2seq network is updated through the MTL framework so as to find the common representation that can cover multiple hypotheses. By doing so, the effect of the \emph{hard-decision} errors can be alleviated. We first demonstrate the effectiveness of our self-learning methods through ASR experiments in an accent adaptation task between the US and British English speech. Our experiment results show that our method can reduce the WER on the British speech data from 14.55\% to 10.36\% compared to the baseline model trained with the US English data only. Moreover, we investigate the effect of our proposed methods in a federated learning scenario.


UserIdentifier: Implicit User Representations for Simple and Effective Personalized Sentiment Analysis

arXiv.org Artificial Intelligence

Global models are trained to be as generalizable as possible, with user invariance considered desirable since the models are shared across multitudes of users. As such, these models are often unable to produce personalized responses for individual users, based on their data. Contrary to widely-used personalization techniques based on few-shot learning, we propose UserIdentifier, a novel scheme for training a single shared model for all users. Our approach produces personalized responses by adding fixed, non-trainable user identifiers to the input data. We empirically demonstrate that this proposed method outperforms the prefix-tuning based state-of-the-art approach by up to 13%, on a suite of sentiment analysis datasets. We also show that, unlike prior work, this method needs neither any additional model parameters nor any extra rounds of few-shot fine-tuning.


Federated Transfer Learning with Dynamic Gradient Aggregation

arXiv.org Machine Learning

In this paper, a Federated Learning (FL) simulation platform is introduced. The target scenario is Acoustic Model training based on this platform. To our knowledge, this is the first attempt to apply FL techniques to Speech Recognition tasks due to the inherent complexity. The proposed FL platform can support different tasks based on the adopted modular design. As part of the platform, a novel hierarchical optimization scheme and two gradient aggregation methods are proposed, leading to almost an order of magnitude improvement in training convergence speed compared to other distributed or FL training algorithms like BMUF and FedAvg. The hierarchical optimization offers additional flexibility in the training pipeline besides the enhanced convergence speed. On top of the hierarchical optimization, a dynamic gradient aggregation algorithm is proposed, based on a data-driven weight inference. This aggregation algorithm acts as a regularizer of the gradient quality. Finally, an unsupervised training pipeline tailored to FL is presented as a separate training scenario. The experimental validation of the proposed system is based on two tasks: first, the LibriSpeech task showing a speed-up of 7x and 6% Word Error Rate reduction (WERR) compared to the baseline results. The second task is based on session adaptation providing an improvement of 20% WERR over a competitive production-ready LAS model. The proposed Federated Learning system is shown to outperform the golden standard of distributed training in both convergence speed and overall model performance.


Improving End-of-turn Detection in Spoken Dialogues by Detecting Speaker Intentions as a Secondary Task

arXiv.org Artificial Intelligence

This work focuses on the use of acoustic cues for modeling turn-taking in dyadic spoken dialogues. Previous work has shown that speaker intentions (e.g., asking a question, uttering a backchannel, etc.) can influence turn-taking behavior and are good predictors of turn-transitions in spoken dialogues. However, speaker intentions are not readily available for use by automated systems at run-time; making it difficult to use this information to anticipate a turn-transition. To this end, we propose a multi-task neural approach for predicting turn- transitions and speaker intentions simultaneously. Our results show that adding the auxiliary task of speaker intention prediction improves the performance of turn-transition prediction in spoken dialogues, without relying on additional input features during run-time.