Goto

Collaborating Authors

 Diego, Ferran


Cost efficient gradient boosting

Neural Information Processing Systems

Many applications require learning classifiers or regressors that are both accurate and cheap to evaluate. Prediction cost can be drastically reduced if the learned predictor is constructed such that on the majority of the inputs, it uses cheap features and fast evaluations. The main challenge is to do so with little loss in accuracy. In this work we propose a budget-aware strategy based on deep boosted regression trees. In contrast to previous approaches to learning with cost penalties, our method can grow very deep trees that on average are nonetheless cheap to compute. We evaluate our method on a number of datasets and find that it outperforms the current state of the art by a large margin. Our algorithm is easy to implement and its learning time is comparable to that of the original gradient boosting.


Sparse convolutional coding for neuronal assembly detection

Neural Information Processing Systems

Cell assemblies, originally proposed by Donald Hebb (1949), are subsets of neurons firing in a temporally coordinated way that gives rise to repeated motifs supposed to underly neural representations and information processing. Although Hebb's original proposal dates back many decades, the detection of assemblies and their role in coding is still an open and current research topic, partly because simultaneous recordings from large populations of neurons became feasible only relatively recently. Most current and easy-to-apply computational techniques focus on the identification of strictly synchronously spiking neurons. In this paper we propose a new algorithm, based on sparse convolutional coding, for detecting recurrent motifs of arbitrary structure up to a given length. Testing of our algorithm on synthetically generated datasets shows that it outperforms established methods and accurately identifies the temporal structure of embedded assemblies, even when these contain overlapping neurons or when strong background noise is present. Moreover, exploratory analysis of experimental datasets from hippocampal slices and cortical neuron cultures have provided promising results.