Dias, Rachel
Trading Inference-Time Compute for Adversarial Robustness
Zaremba, Wojciech, Nitishinskaya, Evgenia, Barak, Boaz, Lin, Stephanie, Toyer, Sam, Yu, Yaodong, Dias, Rachel, Wallace, Eric, Xiao, Kai, Heidecke, Johannes, Glaese, Amelia
We conduct experiments on the impact of increasing inference-time compute in reasoning models (specifically OpenAI o1-preview and o1-mini) on their robustness to adversarial attacks. We find that across a variety of attacks, increased inference-time compute leads to improved robustness. In many cases (with important exceptions), the fraction of model samples where the attack succeeds tends to zero as the amount of test-time compute grows. We perform no adversarial training for the tasks we study, and we increase inference-time compute by simply allowing the models to spend more compute on reasoning, independently of the form of attack. Our results suggest that inference-time compute has the potential to improve adversarial robustness for Large Language Models. We also explore new attacks directed at reasoning models, as well as settings where inference-time compute does not improve reliability, and speculate on the reasons for these as well as ways to address them.
Deliberative Alignment: Reasoning Enables Safer Language Models
Guan, Melody Y., Joglekar, Manas, Wallace, Eric, Jain, Saachi, Barak, Boaz, Helyar, Alec, Dias, Rachel, Vallone, Andrea, Ren, Hongyu, Wei, Jason, Chung, Hyung Won, Toyer, Sam, Heidecke, Johannes, Beutel, Alex, Glaese, Amelia
Modern Large Language Models (LLMs) are safety trained using Supervised Fine Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF) to mitigate harmful, undesirable, or otherwise disallowed outputs [2]-[4]. Despite ongoing advances in these methods, today's models still exhibit safety shortcomings: they can be tricked into revealing harmful content, often refuse legitimate requests, and remain vulnerable to jailbreak attacks [5]-[8]. We argue that many of these failures arise from two limitations in modern safety training. First, LLMs must respond instantly to user requests using a fixed amount of compute, without deliberation even for complex safety scenarios. Second, LLMs must infer underlying safety standards indirectly from large sets of labeled examples, rather than directly learning the safety specifications that govern them. This reliance on implicit, pattern-based learning leads to poor data efficiency and makes it challenging for models to generalize when facing unfamiliar scenarios or adversarial attacks. We propose deliberative alignment, a training approach that teaches LLMs to explicitly reason through safety specifications before producing an answer. By applying this method to OpenAI's o-series models [1], we enable them to use chain-of-thought (CoT) reasoning to examine user prompts, identify relevant policy guidelines, and generate safer responses (e.g., Figure 1).
OpenAI o1 System Card
OpenAI, null, :, null, Jaech, Aaron, Kalai, Adam, Lerer, Adam, Richardson, Adam, El-Kishky, Ahmed, Low, Aiden, Helyar, Alec, Madry, Aleksander, Beutel, Alex, Carney, Alex, Iftimie, Alex, Karpenko, Alex, Passos, Alex Tachard, Neitz, Alexander, Prokofiev, Alexander, Wei, Alexander, Tam, Allison, Bennett, Ally, Kumar, Ananya, Saraiva, Andre, Vallone, Andrea, Duberstein, Andrew, Kondrich, Andrew, Mishchenko, Andrey, Applebaum, Andy, Jiang, Angela, Nair, Ashvin, Zoph, Barret, Ghorbani, Behrooz, Rossen, Ben, Sokolowsky, Benjamin, Barak, Boaz, McGrew, Bob, Minaiev, Borys, Hao, Botao, Baker, Bowen, Houghton, Brandon, McKinzie, Brandon, Eastman, Brydon, Lugaresi, Camillo, Bassin, Cary, Hudson, Cary, Li, Chak Ming, de Bourcy, Charles, Voss, Chelsea, Shen, Chen, Zhang, Chong, Koch, Chris, Orsinger, Chris, Hesse, Christopher, Fischer, Claudia, Chan, Clive, Roberts, Dan, Kappler, Daniel, Levy, Daniel, Selsam, Daniel, Dohan, David, Farhi, David, Mely, David, Robinson, David, Tsipras, Dimitris, Li, Doug, Oprica, Dragos, Freeman, Eben, Zhang, Eddie, Wong, Edmund, Proehl, Elizabeth, Cheung, Enoch, Mitchell, Eric, Wallace, Eric, Ritter, Erik, Mays, Evan, Wang, Fan, Such, Felipe Petroski, Raso, Filippo, Leoni, Florencia, Tsimpourlas, Foivos, Song, Francis, von Lohmann, Fred, Sulit, Freddie, Salmon, Geoff, Parascandolo, Giambattista, Chabot, Gildas, Zhao, Grace, Brockman, Greg, Leclerc, Guillaume, Salman, Hadi, Bao, Haiming, Sheng, Hao, Andrin, Hart, Bagherinezhad, Hessam, Ren, Hongyu, Lightman, Hunter, Chung, Hyung Won, Kivlichan, Ian, O'Connell, Ian, Osband, Ian, Gilaberte, Ignasi Clavera, Akkaya, Ilge, Kostrikov, Ilya, Sutskever, Ilya, Kofman, Irina, Pachocki, Jakub, Lennon, James, Wei, Jason, Harb, Jean, Twore, Jerry, Feng, Jiacheng, Yu, Jiahui, Weng, Jiayi, Tang, Jie, Yu, Jieqi, Candela, Joaquin Quiรฑonero, Palermo, Joe, Parish, Joel, Heidecke, Johannes, Hallman, John, Rizzo, John, Gordon, Jonathan, Uesato, Jonathan, Ward, Jonathan, Huizinga, Joost, Wang, Julie, Chen, Kai, Xiao, Kai, Singhal, Karan, Nguyen, Karina, Cobbe, Karl, Shi, Katy, Wood, Kayla, Rimbach, Kendra, Gu-Lemberg, Keren, Liu, Kevin, Lu, Kevin, Stone, Kevin, Yu, Kevin, Ahmad, Lama, Yang, Lauren, Liu, Leo, Maksin, Leon, Ho, Leyton, Fedus, Liam, Weng, Lilian, Li, Linden, McCallum, Lindsay, Held, Lindsey, Kuhn, Lorenz, Kondraciuk, Lukas, Kaiser, Lukasz, Metz, Luke, Boyd, Madelaine, Trebacz, Maja, Joglekar, Manas, Chen, Mark, Tintor, Marko, Meyer, Mason, Jones, Matt, Kaufer, Matt, Schwarzer, Max, Shah, Meghan, Yatbaz, Mehmet, Guan, Melody Y., Xu, Mengyuan, Yan, Mengyuan, Glaese, Mia, Chen, Mianna, Lampe, Michael, Malek, Michael, Wang, Michele, Fradin, Michelle, McClay, Mike, Pavlov, Mikhail, Wang, Miles, Wang, Mingxuan, Murati, Mira, Bavarian, Mo, Rohaninejad, Mostafa, McAleese, Nat, Chowdhury, Neil, Chowdhury, Neil, Ryder, Nick, Tezak, Nikolas, Brown, Noam, Nachum, Ofir, Boiko, Oleg, Murk, Oleg, Watkins, Olivia, Chao, Patrick, Ashbourne, Paul, Izmailov, Pavel, Zhokhov, Peter, Dias, Rachel, Arora, Rahul, Lin, Randall, Lopes, Rapha Gontijo, Gaon, Raz, Miyara, Reah, Leike, Reimar, Hwang, Renny, Garg, Rhythm, Brown, Robin, James, Roshan, Shu, Rui, Cheu, Ryan, Greene, Ryan, Jain, Saachi, Altman, Sam, Toizer, Sam, Toyer, Sam, Miserendino, Samuel, Agarwal, Sandhini, Hernandez, Santiago, Baker, Sasha, McKinney, Scott, Yan, Scottie, Zhao, Shengjia, Hu, Shengli, Santurkar, Shibani, Chaudhuri, Shraman Ray, Zhang, Shuyuan, Fu, Siyuan, Papay, Spencer, Lin, Steph, Balaji, Suchir, Sanjeev, Suvansh, Sidor, Szymon, Broda, Tal, Clark, Aidan, Wang, Tao, Gordon, Taylor, Sanders, Ted, Patwardhan, Tejal, Sottiaux, Thibault, Degry, Thomas, Dimson, Thomas, Zheng, Tianhao, Garipov, Timur, Stasi, Tom, Bansal, Trapit, Creech, Trevor, Peterson, Troy, Eloundou, Tyna, Qi, Valerie, Kosaraju, Vineet, Monaco, Vinnie, Pong, Vitchyr, Fomenko, Vlad, Zheng, Weiyi, Zhou, Wenda, McCabe, Wes, Zaremba, Wojciech, Dubois, Yann, Lu, Yinghai, Chen, Yining, Cha, Young, Bai, Yu, He, Yuchen, Zhang, Yuchen, Wang, Yunyun, Shao, Zheng, Li, Zhuohan
The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought. These advanced reasoning capabilities provide new avenues for improving the safety and robustness of our models. In particular, our models can reason about our safety policies in context when responding to potentially unsafe prompts, through deliberative alignment. This leads to state-of-the-art performance on certain benchmarks for risks such as generating illicit advice, choosing stereotyped responses, and succumbing to known jailbreaks. Training models to incorporate a chain of thought before answering has the potential to unlock substantial benefits, while also increasing potential risks that stem from heightened intelligence. Our results underscore the need for building robust alignment methods, extensively stress-testing their efficacy, and maintaining meticulous risk management protocols. This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.
GPT-4o System Card
OpenAI, null, :, null, Hurst, Aaron, Lerer, Adam, Goucher, Adam P., Perelman, Adam, Ramesh, Aditya, Clark, Aidan, Ostrow, AJ, Welihinda, Akila, Hayes, Alan, Radford, Alec, Mฤ dry, Aleksander, Baker-Whitcomb, Alex, Beutel, Alex, Borzunov, Alex, Carney, Alex, Chow, Alex, Kirillov, Alex, Nichol, Alex, Paino, Alex, Renzin, Alex, Passos, Alex Tachard, Kirillov, Alexander, Christakis, Alexi, Conneau, Alexis, Kamali, Ali, Jabri, Allan, Moyer, Allison, Tam, Allison, Crookes, Amadou, Tootoochian, Amin, Tootoonchian, Amin, Kumar, Ananya, Vallone, Andrea, Karpathy, Andrej, Braunstein, Andrew, Cann, Andrew, Codispoti, Andrew, Galu, Andrew, Kondrich, Andrew, Tulloch, Andrew, Mishchenko, Andrey, Baek, Angela, Jiang, Angela, Pelisse, Antoine, Woodford, Antonia, Gosalia, Anuj, Dhar, Arka, Pantuliano, Ashley, Nayak, Avi, Oliver, Avital, Zoph, Barret, Ghorbani, Behrooz, Leimberger, Ben, Rossen, Ben, Sokolowsky, Ben, Wang, Ben, Zweig, Benjamin, Hoover, Beth, Samic, Blake, McGrew, Bob, Spero, Bobby, Giertler, Bogo, Cheng, Bowen, Lightcap, Brad, Walkin, Brandon, Quinn, Brendan, Guarraci, Brian, Hsu, Brian, Kellogg, Bright, Eastman, Brydon, Lugaresi, Camillo, Wainwright, Carroll, Bassin, Cary, Hudson, Cary, Chu, Casey, Nelson, Chad, Li, Chak, Shern, Chan Jun, Conger, Channing, Barette, Charlotte, Voss, Chelsea, Ding, Chen, Lu, Cheng, Zhang, Chong, Beaumont, Chris, Hallacy, Chris, Koch, Chris, Gibson, Christian, Kim, Christina, Choi, Christine, McLeavey, Christine, Hesse, Christopher, Fischer, Claudia, Winter, Clemens, Czarnecki, Coley, Jarvis, Colin, Wei, Colin, Koumouzelis, Constantin, Sherburn, Dane, Kappler, Daniel, Levin, Daniel, Levy, Daniel, Carr, David, Farhi, David, Mely, David, Robinson, David, Sasaki, David, Jin, Denny, Valladares, Dev, Tsipras, Dimitris, Li, Doug, Nguyen, Duc Phong, Findlay, Duncan, Oiwoh, Edede, Wong, Edmund, Asdar, Ehsan, Proehl, Elizabeth, Yang, Elizabeth, Antonow, Eric, Kramer, Eric, Peterson, Eric, Sigler, Eric, Wallace, Eric, Brevdo, Eugene, Mays, Evan, Khorasani, Farzad, Such, Felipe Petroski, Raso, Filippo, Zhang, Francis, von Lohmann, Fred, Sulit, Freddie, Goh, Gabriel, Oden, Gene, Salmon, Geoff, Starace, Giulio, Brockman, Greg, Salman, Hadi, Bao, Haiming, Hu, Haitang, Wong, Hannah, Wang, Haoyu, Schmidt, Heather, Whitney, Heather, Jun, Heewoo, Kirchner, Hendrik, Pinto, Henrique Ponde de Oliveira, Ren, Hongyu, Chang, Huiwen, Chung, Hyung Won, Kivlichan, Ian, O'Connell, Ian, O'Connell, Ian, Osband, Ian, Silber, Ian, Sohl, Ian, Okuyucu, Ibrahim, Lan, Ikai, Kostrikov, Ilya, Sutskever, Ilya, Kanitscheider, Ingmar, Gulrajani, Ishaan, Coxon, Jacob, Menick, Jacob, Pachocki, Jakub, Aung, James, Betker, James, Crooks, James, Lennon, James, Kiros, Jamie, Leike, Jan, Park, Jane, Kwon, Jason, Phang, Jason, Teplitz, Jason, Wei, Jason, Wolfe, Jason, Chen, Jay, Harris, Jeff, Varavva, Jenia, Lee, Jessica Gan, Shieh, Jessica, Lin, Ji, Yu, Jiahui, Weng, Jiayi, Tang, Jie, Yu, Jieqi, Jang, Joanne, Candela, Joaquin Quinonero, Beutler, Joe, Landers, Joe, Parish, Joel, Heidecke, Johannes, Schulman, John, Lachman, Jonathan, McKay, Jonathan, Uesato, Jonathan, Ward, Jonathan, Kim, Jong Wook, Huizinga, Joost, Sitkin, Jordan, Kraaijeveld, Jos, Gross, Josh, Kaplan, Josh, Snyder, Josh, Achiam, Joshua, Jiao, Joy, Lee, Joyce, Zhuang, Juntang, Harriman, Justyn, Fricke, Kai, Hayashi, Kai, Singhal, Karan, Shi, Katy, Karthik, Kavin, Wood, Kayla, Rimbach, Kendra, Hsu, Kenny, Nguyen, Kenny, Gu-Lemberg, Keren, Button, Kevin, Liu, Kevin, Howe, Kiel, Muthukumar, Krithika, Luther, Kyle, Ahmad, Lama, Kai, Larry, Itow, Lauren, Workman, Lauren, Pathak, Leher, Chen, Leo, Jing, Li, Guy, Lia, Fedus, Liam, Zhou, Liang, Mamitsuka, Lien, Weng, Lilian, McCallum, Lindsay, Held, Lindsey, Ouyang, Long, Feuvrier, Louis, Zhang, Lu, Kondraciuk, Lukas, Kaiser, Lukasz, Hewitt, Luke, Metz, Luke, Doshi, Lyric, Aflak, Mada, Simens, Maddie, Boyd, Madelaine, Thompson, Madeleine, Dukhan, Marat, Chen, Mark, Gray, Mark, Hudnall, Mark, Zhang, Marvin, Aljubeh, Marwan, Litwin, Mateusz, Zeng, Matthew, Johnson, Max, Shetty, Maya, Gupta, Mayank, Shah, Meghan, Yatbaz, Mehmet, Yang, Meng Jia, Zhong, Mengchao, Glaese, Mia, Chen, Mianna, Janner, Michael, Lampe, Michael, Petrov, Michael, Wu, Michael, Wang, Michele, Fradin, Michelle, Pokrass, Michelle, Castro, Miguel, de Castro, Miguel Oom Temudo, Pavlov, Mikhail, Brundage, Miles, Wang, Miles, Khan, Minal, Murati, Mira, Bavarian, Mo, Lin, Molly, Yesildal, Murat, Soto, Nacho, Gimelshein, Natalia, Cone, Natalie, Staudacher, Natalie, Summers, Natalie, LaFontaine, Natan, Chowdhury, Neil, Ryder, Nick, Stathas, Nick, Turley, Nick, Tezak, Nik, Felix, Niko, Kudige, Nithanth, Keskar, Nitish, Deutsch, Noah, Bundick, Noel, Puckett, Nora, Nachum, Ofir, Okelola, Ola, Boiko, Oleg, Murk, Oleg, Jaffe, Oliver, Watkins, Olivia, Godement, Olivier, Campbell-Moore, Owen, Chao, Patrick, McMillan, Paul, Belov, Pavel, Su, Peng, Bak, Peter, Bakkum, Peter, Deng, Peter, Dolan, Peter, Hoeschele, Peter, Welinder, Peter, Tillet, Phil, Pronin, Philip, Tillet, Philippe, Dhariwal, Prafulla, Yuan, Qiming, Dias, Rachel, Lim, Rachel, Arora, Rahul, Troll, Rajan, Lin, Randall, Lopes, Rapha Gontijo, Puri, Raul, Miyara, Reah, Leike, Reimar, Gaubert, Renaud, Zamani, Reza, Wang, Ricky, Donnelly, Rob, Honsby, Rob, Smith, Rocky, Sahai, Rohan, Ramchandani, Rohit, Huet, Romain, Carmichael, Rory, Zellers, Rowan, Chen, Roy, Chen, Ruby, Nigmatullin, Ruslan, Cheu, Ryan, Jain, Saachi, Altman, Sam, Schoenholz, Sam, Toizer, Sam, Miserendino, Samuel, Agarwal, Sandhini, Culver, Sara, Ethersmith, Scott, Gray, Scott, Grove, Sean, Metzger, Sean, Hermani, Shamez, Jain, Shantanu, Zhao, Shengjia, Wu, Sherwin, Jomoto, Shino, Wu, Shirong, Shuaiqi, null, Xia, null, Phene, Sonia, Papay, Spencer, Narayanan, Srinivas, Coffey, Steve, Lee, Steve, Hall, Stewart, Balaji, Suchir, Broda, Tal, Stramer, Tal, Xu, Tao, Gogineni, Tarun, Christianson, Taya, Sanders, Ted, Patwardhan, Tejal, Cunninghman, Thomas, Degry, Thomas, Dimson, Thomas, Raoux, Thomas, Shadwell, Thomas, Zheng, Tianhao, Underwood, Todd, Markov, Todor, Sherbakov, Toki, Rubin, Tom, Stasi, Tom, Kaftan, Tomer, Heywood, Tristan, Peterson, Troy, Walters, Tyce, Eloundou, Tyna, Qi, Valerie, Moeller, Veit, Monaco, Vinnie, Kuo, Vishal, Fomenko, Vlad, Chang, Wayne, Zheng, Weiyi, Zhou, Wenda, Manassra, Wesam, Sheu, Will, Zaremba, Wojciech, Patil, Yash, Qian, Yilei, Kim, Yongjik, Cheng, Youlong, Zhang, Yu, He, Yuchen, Zhang, Yuchen, Jin, Yujia, Dai, Yunxing, Malkov, Yury
GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.