Diana Cai
A Bayesian Nonparametric View on Count-Min Sketch
Diana Cai, Michael Mitzenmacher, Ryan P. Adams
The count-min sketch is a time-and memory-efficient randomized data structure that provides a point estimate of the number of times an item has appeared in a data stream. The count-min sketch and related hash-based data structures are ubiquitous in systems that must track frequencies of data such as URLs, IP addresses, and language n-grams. We present a Bayesian view on the count-min sketch, using the same data structure, but providing a posterior distribution over the frequencies that characterizes the uncertainty arising from the hash-based approximation. In particular, we take a nonparametric approach and consider tokens generated from a Dirichlet process (DP) random measure, which allows for an unbounded number of unique tokens. Using properties of the DP, we show that it is possible to straightforwardly compute posterior marginals of the unknown true counts and that the modes of these marginals recover the count-min sketch estimator, inheriting the associated probabilistic guarantees. Using simulated data and text data, we investigate the properties of these estimators. Lastly, we also study a modified problem in which the observation stream consists of collections of tokens (i.e., documents) arising from a random measure drawn from a stable beta process, which allows for power law scaling behavior in the number of unique tokens.
Edge-exchangeable graphs and sparsity
Diana Cai, Trevor Campbell, Tamara Broderick
Many popular network models rely on the assumption of (vertex) exchangeability, in which the distribution of the graph is invariant to relabelings of the vertices. However, the Aldous-Hoover theorem guarantees that these graphs are dense or empty with probability one, whereas many real-world graphs are sparse. We present an alternative notion of exchangeability for random graphs, which we call edge exchangeability, in which the distribution of a graph sequence is invariant to the order of the edges. We demonstrate that edge-exchangeable models, unlike models that are traditionally vertex exchangeable, can exhibit sparsity. To do so, we outline a general framework for graph generative models; by contrast to the pioneering work of Caron and Fox [12], models within our framework are stationary across steps of the graph sequence. In particular, our model grows the graph by instantiating more latent atoms of a single random measure as the dataset size increases, rather than adding new atoms to the measure.
A Bayesian Nonparametric View on Count-Min Sketch
Diana Cai, Michael Mitzenmacher, Ryan P. Adams
The count-min sketch is a time-and memory-efficient randomized data structure that provides a point estimate of the number of times an item has appeared in a data stream. The count-min sketch and related hash-based data structures are ubiquitous in systems that must track frequencies of data such as URLs, IP addresses, and language n-grams. We present a Bayesian view on the count-min sketch, using the same data structure, but providing a posterior distribution over the frequencies that characterizes the uncertainty arising from the hash-based approximation. In particular, we take a nonparametric approach and consider tokens generated from a Dirichlet process (DP) random measure, which allows for an unbounded number of unique tokens. Using properties of the DP, we show that it is possible to straightforwardly compute posterior marginals of the unknown true counts and that the modes of these marginals recover the count-min sketch estimator, inheriting the associated probabilistic guarantees. Using simulated data and text data, we investigate the properties of these estimators. Lastly, we also study a modified problem in which the observation stream consists of collections of tokens (i.e., documents) arising from a random measure drawn from a stable beta process, which allows for power law scaling behavior in the number of unique tokens.