Goto

Collaborating Authors

 Diamantaras, K. I.


Resolving motion ambiguities

Neural Information Processing Systems

We address the problem of optical flow reconstruction and in particular theproblem of resolving ambiguities near edges. They occur due to (i) the aperture problem and (ii) the occlusion problem, where pixels on both sides of an intensity edge are assigned the same velocity estimates (and confidence). However, these measurements are correct for just one side of the edge (the non occluded one). Our approach is to introduce an uncertamty field with respect to the estimates and confidence measures. We note that the confidence measuresare large at intensity edges and larger at the convex sides of the edges, i.e. inside corners, than at the concave side. We resolve the ambiguities through local interactions via coupled Markov random fields (MRF). The result is the detection of motion for regions of images with large global convexity.


Resolving motion ambiguities

Neural Information Processing Systems

We address the problem of optical flow reconstruction and in particular the problem of resolving ambiguities near edges. They occur due to (i) the aperture problem and (ii) the occlusion problem, where pixels on both sides of an intensity edge are assigned the same velocity estimates (and confidence). However, these measurements are correct for just one side of the edge (the non occluded one). Our approach is to introduce an uncertamty field with respect to the estimates and confidence measures. We note that the confidence measures are large at intensity edges and larger at the convex sides of the edges, i.e. inside corners, than at the concave side. We resolve the ambiguities through local interactions via coupled Markov random fields (MRF). The result is the detection of motion for regions of images with large global convexity.