Goto

Collaborating Authors

 DiValentin, Louis


Proactive Privacy Amnesia for Large Language Models: Safeguarding PII with Negligible Impact on Model Utility

arXiv.org Artificial Intelligence

With the rise of large language models (LLMs), increasing research has recognized their risk of leaking personally identifiable information (PII) under malicious attacks. Although efforts have been made to protect PII in LLMs, existing methods struggle to balance privacy protection with maintaining model utility. In this paper, inspired by studies of amnesia in cognitive science, we propose a novel approach, Proactive Privacy Amnesia (PPA), to safeguard PII in LLMs while preserving their utility. This mechanism works by actively identifying and forgetting key memories most closely associated with PII in sequences, followed by a memory implanting using suitable substitute memories to maintain the LLM's functionality. We conduct evaluations across multiple models to protect common PII, such as phone numbers and physical addresses, against prevalent PII-targeted attacks, demonstrating the superiority of our method compared with other existing defensive techniques. The results show that our PPA method completely eliminates the risk of phone number exposure by 100% and significantly reduces the risk of physical address exposure by 9.8% - 87.6%, all while maintaining comparable model utility performance. Large Language Models (LLMs) (Touvron et al., 2023; Achiam et al., 2023; Team et al., 2023; Dubey et al., 2024) have achieved remarkable success in recent years, with their wide adoption either as general-purpose models or, after fine-tuning, as specialized and personal assistants. Despite their success, LLMs with huge parameter counts and great capacity in the meantime exhibit the concerning "memorization" phenomenons (Carlini et al., 2019; 2021), i.e., they can precisely memorize some training data. Such memorization is vulnerable to various attacks (e.g., membership inference attacks and data extraction attacks) and risks severe privacy breaches. One of the most serious concerns comes from the attacks that aim to extract personal identifiable information (PII) memorized by the models, which compromise users' privacy and are likely to cause real-world harm consequently. To defend against such PII or data extraction attacks, several machine unlearning techniques have been applied to LLMs. However, existing methods typically fall short in terms of the trade-off between the defense performance and model utility. For example, most unlearning approaches are based on gradient ascent (Jang et al., 2022; Wang et al., 2024) and often adversely affect model functionalities to an extent where the model cannot handle their original tasks anymore and thus becomes no longer useful.


H-CoT: Hijacking the Chain-of-Thought Safety Reasoning Mechanism to Jailbreak Large Reasoning Models, Including OpenAI o1/o3, DeepSeek-R1, and Gemini 2.0 Flash Thinking

arXiv.org Artificial Intelligence

Warning: This paper contains potentially offensive and harmful text. Large Reasoning Models (LRMs) have recently extended their powerful reasoning capabilities to safety checks--using chain-of-thought reasoning to decide whether a request should be answered. While this new approach offers a promising route for balancing model utility and safety, its robustness remains underexplored. To address this gap, we introduce Malicious-Educator, a benchmark that disguises extremely dangerous or malicious requests beneath seemingly legitimate educational prompts. Our experiments reveal severe security flaws in popular commercial-grade LRMs, including OpenAI o1/o3, DeepSeek-R1, and Gemini 2.0 Flash Thinking. For instance, although OpenAI's o1 model initially maintains a high refusal rate of about 98%, subsequent model updates significantly compromise its safety; and attackers can easily extract criminal strategies from DeepSeek-R1 and Gemini 2.0 Flash Thinking without any additional tricks. To further highlight these vulnerabilities, we propose Hijacking Chain-of-Thought (H-CoT), a universal and transferable attack method that leverages the model's own displayed intermediate reasoning to jailbreak its safety reasoning mechanism. Under H-CoT, refusal rates sharply decline--dropping from 98% to below 2%--and, in some instances, even transform initially cautious tones into ones that are willing to provide harmful content. We hope these findings underscore the urgent need for more robust safety mechanisms to preserve the benefits of advanced reasoning capabilities without compromising ethical standards.


FADE: Enabling Federated Adversarial Training on Heterogeneous Resource-Constrained Edge Devices

arXiv.org Artificial Intelligence

Federated adversarial training can effectively complement adversarial robustness into the privacy-preserving federated learning systems. However, the high demand for memory capacity and computing power makes large-scale federated adversarial training infeasible on resource-constrained edge devices. Few previous studies in federated adversarial training have tried to tackle both memory and computational constraints simultaneously. In this paper, we propose a new framework named Federated Adversarial Decoupled Learning (FADE) to enable AT on heterogeneous resource-constrained edge devices. FADE differentially decouples the entire model into small modules to fit into the resource budget of each device, and each device only needs to perform AT on a single module in each communication round. We also propose an auxiliary weight decay to alleviate objective inconsistency and achieve better accuracy-robustness balance in FADE. FADE offers theoretical guarantees for convergence and adversarial robustness, and our experimental results show that FADE can significantly reduce the consumption of memory and computing power while maintaining accuracy and robustness.


FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective

arXiv.org Artificial Intelligence

Federated learning (FL) is a popular distributed learning framework that trains a global model through iterative communications between a central server and edge devices. Recent works have demonstrated that FL is vulnerable to model poisoning attacks. Several server-based defense approaches (e.g. robust aggregation), have been proposed to mitigate such attacks. However, we empirically show that under extremely strong attacks, these defensive methods fail to guarantee the robustness of FL. More importantly, we observe that as long as the global model is polluted, the impact of attacks on the global model will remain in subsequent rounds even if there are no subsequent attacks. In this work, we propose a client-based defense, named White Blood Cell for Federated Learning (FL-WBC), which can mitigate model poisoning attacks that have already polluted the global model. The key idea of FL-WBC is to identify the parameter space where long-lasting attack effect on parameters resides and perturb that space during local training. Furthermore, we derive a certified robustness guarantee against model poisoning attacks and a convergence guarantee to FedAvg after applying our FL-WBC. We conduct experiments on FasionMNIST and CIFAR10 to evaluate the defense against state-of-the-art model poisoning attacks. The results demonstrate that our method can effectively mitigate model poisoning attack impact on the global model within 5 communication rounds with nearly no accuracy drop under both IID and Non-IID settings. Our defense is also complementary to existing server-based robust aggregation approaches and can further improve the robustness of FL under extremely strong attacks.