Di He
Fast Structured Decoding for Sequence Models
Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin, Zhihong Deng
Autoregressive sequence models achieve state-of-the-art performance in domains like machine translation. However, due to the autoregressive factorization nature, these models suffer from heavy latency during inference. Recently, nonautoregressive sequence models were proposed to reduce the inference time. However, these models assume that the decoding process of each token is conditionally independent of others. Such a generation process sometimes makes the output sentence inconsistent, and thus the learned non-autoregressive models could only achieve inferior accuracy compared to their autoregressive counterparts. To improve the decoding consistency and reduce the inference cost at the same time, we propose to incorporate a structured inference module into the non-autoregressive models. Specifically, we design an efficient approximation for Conditional Random Fields (CRF) for non-autoregressive sequence models, and further propose a dynamic transition technique to model positional contexts in the CRF. Experiments in machine translation show that while increasing little latency (8 14ms), our model could achieve significantly better translation performance than previous non-autoregressive models on different translation datasets. In particular, for the WMT14 En-De dataset, our model obtains a BLEU score of 26.80, which largely outperforms the previous non-autoregressive baselines and is only 0.61 lower in BLEU than purely autoregressive models.
Fast Structured Decoding for Sequence Models
Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin, Zhihong Deng
Autoregressive sequence models achieve state-of-the-art performance in domains like machine translation. However, due to the autoregressive factorization nature, these models suffer from heavy latency during inference. Recently, nonautoregressive sequence models were proposed to reduce the inference time. However, these models assume that the decoding process of each token is conditionally independent of others. Such a generation process sometimes makes the output sentence inconsistent, and thus the learned non-autoregressive models could only achieve inferior accuracy compared to their autoregressive counterparts. To improve the decoding consistency and reduce the inference cost at the same time, we propose to incorporate a structured inference module into the non-autoregressive models. Specifically, we design an efficient approximation for Conditional Random Fields (CRF) for non-autoregressive sequence models, and further propose a dynamic transition technique to model positional contexts in the CRF. Experiments in machine translation show that while increasing little latency (8 14ms), our model could achieve significantly better translation performance than previous non-autoregressive models on different translation datasets. In particular, for the WMT14 En-De dataset, our model obtains a BLEU score of 26.80, which largely outperforms the previous non-autoregressive baselines and is only 0.61 lower in BLEU than purely autoregressive models.
Dual Learning for Machine Translation
Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, Wei-Ying Ma
While neural machine translation (NMT) is making good progress in the past two years, tens of millions of bilingual sentence pairs are needed for its training. However, human labeling is very costly. To tackle this training data bottleneck, we develop a dual-learning mechanism, which can enable an NMT system to automatically learn from unlabeled data through a dual-learning game. This mechanism is inspired by the following observation: any machine translation task has a dual task, e.g., English-to-French translation (primal) versus French-to-English translation (dual); the primal and dual tasks can form a closed loop, and generate informative feedback signals to train the translation models, even if without the involvement of a human labeler. In the dual-learning mechanism, we use one agent to represent the model for the primal task and the other agent to represent the model for the dual task, then ask them to teach each other through a reinforcement learning process. Based on the feedback signals generated during this process (e.g., the languagemodel likelihood of the output of a model, and the reconstruction error of the original sentence after the primal and dual translations), we can iteratively update the two models until convergence (e.g., using the policy gradient methods). We call the corresponding approach to neural machine translation dual-NMT. Experiments show that dual-NMT works very well on English French translation; especially, by learning from monolingual data (with 10% bilingual data for warm start), it achieves a comparable accuracy to NMT trained from the full bilingual data for the French-to-English translation task.
FRAGE: Frequency-Agnostic Word Representation
Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang, Tie-Yan Liu
Continuous word representation (aka word embedding) is a basic building block in many neural network-based models used in natural language processing tasks. Although it is widely accepted that words with similar semantics should be close to each other in the embedding space, we find that word embeddings learned in several tasks are biased towards word frequency: the embeddings of high-frequency and low-frequency words lie in different subregions of the embedding space, and the embedding of a rare word and a popular word can be far from each other even if they are semantically similar. This makes learned word embeddings ineffective, especially for rare words, and consequently limits the performance of these neural network models. In this paper, we develop FRequency-AGnostic word Embedding (FRAGE) which is a neat, simple yet effective way to learn word representation using adversarial training. We conducted comprehensive studies on ten datasets across four natural language processing tasks, including word similarity, language modeling, machine translation, and text classification. Results show that with FRAGE, we achieve higher performance than the baselines in all tasks.
Decoding with Value Networks for Neural Machine Translation
Di He, Hanqing Lu, Yingce Xia, Tao Qin, Liwei Wang, Tie-Yan Liu
Neural Machine Translation (NMT) has become a popular technology in recent years, and beam search is its de facto decoding method due to the shrunk search space and reduced computational complexity. However, since it only searches for local optima at each time step through one-step forward looking, it usually cannot output the best target sentence.
Layer-Wise Coordination between Encoder and Decoder for Neural Machine Translation
Tianyu He, Xu Tan, Yingce Xia, Di He, Tao Qin, Zhibo Chen, Tie-Yan Liu
Neural Machine Translation (NMT) has achieved remarkable progress with the quick evolvement of model structures. In this paper, we propose the concept of layer-wise coordination for NMT, which explicitly coordinates the learning of hidden representations of the encoder and decoder together layer by layer, gradually from low level to high level. Specifically, we design a layer-wise attention and mixed attention mechanism, and further share the parameters of each layer between the encoder and decoder to regularize and coordinate the learning. Experiments show that combined with the state-of-the-art Transformer model, layer-wise coordination achieves improvements on three IWSLT and two WMT translation tasks. More specifically, our method achieves 34.43 and 29.01 BLEU score on WMT16 English-Romanian and WMT14 English-German tasks, outperforming the Transformer baseline.
Decoding with Value Networks for Neural Machine Translation
Di He, Hanqing Lu, Yingce Xia, Tao Qin, Liwei Wang, Tie-Yan Liu
Neural Machine Translation (NMT) has become a popular technology in recent years, and beam search is its de facto decoding method due to the shrunk search space and reduced computational complexity. However, since it only searches for local optima at each time step through one-step forward looking, it usually cannot output the best target sentence.