Goto

Collaborating Authors

 Dhuheir, Marwan


Multi-UAV Multi-RIS QoS-Aware Aerial Communication Systems using DRL and PSO

arXiv.org Artificial Intelligence

Recently, Unmanned Aerial Vehicles (UAVs) have attracted the attention of researchers in academia and industry for providing wireless services to ground users in diverse scenarios like festivals, large sporting events, natural and man-made disasters due to their advantages in terms of versatility and maneuverability. However, the limited resources of UAVs (e.g., energy budget and different service requirements) can pose challenges for adopting UAVs for such applications. Our system model considers a UAV swarm that navigates an area, providing wireless communication to ground users with RIS support to improve the coverage of the UAVs. In this work, we introduce an optimization model with the aim of maximizing the throughput and UAVs coverage through optimal path planning of UAVs and multi-RIS phase configurations. The formulated optimization is challenging to solve using standard linear programming techniques, limiting its applicability in real-time decision-making. Therefore, we introduce a two-step solution using deep reinforcement learning and particle swarm optimization. We conduct extensive simulations and compare our approach to two competitive solutions presented in the recent literature. Our simulation results demonstrate that our adopted approach is 20 \% better than the brute-force approach and 30\% better than the baseline solution in terms of QoS.


Meta Reinforcement Learning for Strategic IoT Deployments Coverage in Disaster-Response UAV Swarms

arXiv.org Artificial Intelligence

In the past decade, Unmanned Aerial Vehicles (UAVs) have grabbed the attention of researchers in academia and industry for their potential use in critical emergency applications, such as providing wireless services to ground users and collecting data from areas affected by disasters, due to their advantages in terms of maneuverability and movement flexibility. The UAVs' limited resources, energy budget, and strict mission completion time have posed challenges in adopting UAVs for these applications. Our system model considers a UAV swarm that navigates an area collecting data from ground IoT devices focusing on providing better service for strategic locations and allowing UAVs to join and leave the swarm (e.g., for recharging) in a dynamic way. In this work, we introduce an optimization model with the aim of minimizing the total energy consumption and provide the optimal path planning of UAVs under the constraints of minimum completion time and transmit power. The formulated optimization is NP-hard making it not applicable for real-time decision making. Therefore, we introduce a light-weight meta-reinforcement learning solution that can also cope with sudden changes in the environment through fast convergence. We conduct extensive simulations and compare our approach to three state-of-the-art learning models. Our simulation results prove that our introduced approach is better than the three state-of-the-art algorithms in providing coverage to strategic locations with fast convergence.


LLHR: Low Latency and High Reliability CNN Distributed Inference for Resource-Constrained UAV Swarms

arXiv.org Artificial Intelligence

Recently, Unmanned Aerial Vehicles (UAVs) have shown impressive performance in many critical applications, such as surveillance, search and rescue operations, environmental monitoring, etc. In many of these applications, the UAVs capture images as well as other sensory data and then send the data processing requests to remote servers. Nevertheless, this approach is not always practical in real-time-based applications due to unstable connections, limited bandwidth, limited energy, and strict end-to-end latency. One promising solution is to divide the inference requests into subtasks that can be distributed among UAVs in a swarm based on the available resources. Moreover, these tasks create intermediate results that need to be transmitted reliably as the swarm moves to cover the area. Our system model deals with real-time requests, aiming to find the optimal transmission power that guarantees higher reliability and low latency. We formulate the Low Latency and High-Reliability (LLHR) distributed inference as an optimization problem, and due to the complexity of the problem, we divide it into three subproblems. In the first subproblem, we find the optimal transmit power of the connected UAVs with guaranteed transmission reliability. The second subproblem aims to find the optimal positions of the UAVs in the grid, while the last subproblem finds the optimal placement of the CNN layers in the available UAVs. We conduct extensive simulations and compare our work to two baseline models demonstrating that our model outperforms the competing models.


Deep Reinforcement Learning for Trajectory Path Planning and Distributed Inference in Resource-Constrained UAV Swarms

arXiv.org Artificial Intelligence

The deployment flexibility and maneuverability of Unmanned Aerial Vehicles (UAVs) increased their adoption in various applications, such as wildfire tracking, border monitoring, etc. In many critical applications, UAVs capture images and other sensory data and then send the captured data to remote servers for inference and data processing tasks. However, this approach is not always practical in real-time applications due to the connection instability, limited bandwidth, and end-to-end latency. One promising solution is to divide the inference requests into multiple parts (layers or segments), with each part being executed in a different UAV based on the available resources. Furthermore, some applications require the UAVs to traverse certain areas and capture incidents; thus, planning their paths becomes critical particularly, to reduce the latency of making the collaborative inference process. Specifically, planning the UAVs trajectory can reduce the data transmission latency by communicating with devices in the same proximity while mitigating the transmission interference. This work aims to design a model for distributed collaborative inference requests and path planning in a UAV swarm while respecting the resource constraints due to the computational load and memory usage of the inference requests. The model is formulated as an optimization problem and aims to minimize latency. The formulated problem is NP-hard so finding the optimal solution is quite complex; thus, this paper introduces a real-time and dynamic solution for online applications using deep reinforcement learning. We conduct extensive simulations and compare our results to the-state-of-the-art studies demonstrating that our model outperforms the competing models.