Dhesi, Aman
Random Projection Trees Revisited
Dhesi, Aman, Kar, Purushottam
The Random Projection Tree (RPTree) structures proposed in [Dasgupta-Freund-STOC-08] are space partitioning data structures that automatically adapt to various notions of intrinsic dimensionality of data. We prove new results for both the RPTree-Max and the RPTree-Mean data structures. Our result for RPTree-Max gives a near-optimal bound on the number of levels required by this data structure to reduce the size of its cells by a factor s >= 2. We also prove a packing lemma for this data structure. Our final result shows that low-dimensional manifolds possess bounded Local Covariance Dimension. As a consequence we show that RPTree-Mean adapts to manifold dimension as well.
Random Projection Trees Revisited
Dhesi, Aman, Kar, Purushottam
The Random Projection Tree structures proposed in [Freund-Dasgupta STOC08] are space partitioning data structures that automatically adapt to various notions of intrinsic dimensionality of data. We prove new results for both the RPTreeMax and the RPTreeMean data structures. Our result for RPTreeMax gives a near-optimal bound on the number of levels required by this data structure to reduce the size of its cells by a factor $s \geq 2$. We also prove a packing lemma for this data structure. Our final result shows that low-dimensional manifolds have bounded Local Covariance Dimension. As a consequence we show that RPTreeMean adapts to manifold dimension as well.
Predicting the Importance of Newsfeed Posts and Social Network Friends
Paek, Tim (Microsoft Research) | Gamon, Michael (Microsoft Research) | Counts, Scott (Microsoft Research) | Chickering, David Maxwell (Microsoft Research) | Dhesi, Aman (Indian Institute of Technology Kanpur)
As users of social networking websites expand their network of friends, they are often flooded with newsfeed posts and status updates, most of which they consider to be "unimportant" and not newsworthy. In order to better understand how people judge the importance of their newsfeed, we conducted a study in which Facebook users were asked to rate the importance of their newsfeed posts as well as their friends. We learned classifiers of newsfeed and friend importance to identify predictive sets of features related to social media properties, the message text, and shared background information. For classifying friend importance, the best performing model achieved 85% accuracy and 25% error reduction. By leveraging this model for classifying newsfeed posts, the best newsfeed classifier achieved 64% accuracy and 27% error reduction.