Not enough data to create a plot.
Try a different view from the menu above.
Dhami, Devendra Singh
Do Not Marginalize Mechanisms, Rather Consolidate!
Willig, Moritz, Zečević, Matej, Dhami, Devendra Singh, Kersting, Kristian
Structural causal models (SCMs) are a powerful tool for understanding the complex causal relationships that underlie many real-world systems. As these systems grow in size, the number of variables and complexity of interactions between them does, too. Thus, becoming convoluted and difficult to analyze. This is particularly true in the context of machine learning and artificial intelligence, where an ever increasing amount of data demands for new methods to simplify and compress large scale SCM. While methods for marginalizing and abstracting SCM already exist today, they may destroy the causality of the marginalized model. To alleviate this, we introduce the concept of consolidating causal mechanisms to transform large-scale SCM while preserving consistent interventional behaviour. We show consolidation is a powerful method for simplifying SCM, discuss reduction of computational complexity and give a perspective on generalizing abilities of consolidated SCM.
Causal Parrots: Large Language Models May Talk Causality But Are Not Causal
Zečević, Matej, Willig, Moritz, Dhami, Devendra Singh, Kersting, Kristian
Some argue scale is all what is needed to achieve AI, covering even causal models. We make it clear that large language models (LLMs) cannot be causal and give reason onto why sometimes we might feel otherwise. To this end, we define and exemplify a new subgroup of Structural Causal Model (SCM) that we call meta SCM which encode causal facts about other SCM within their variables. We conjecture that in the cases where LLM succeed in doing causal inference, underlying was a respective meta SCM that exposed correlations between causal facts in natural language on whose data the LLM was ultimately trained. If our hypothesis holds true, then this would imply that LLMs are like parrots in that they simply recite the causal knowledge embedded in the data. Our empirical analysis provides favoring evidence that current LLMs are even weak `causal parrots.'
Vision Relation Transformer for Unbiased Scene Graph Generation
Sudhakaran, Gopika, Dhami, Devendra Singh, Kersting, Kristian, Roth, Stefan
Recent years have seen a growing interest in Scene Graph Generation (SGG), a comprehensive visual scene understanding task that aims to predict entity relationships using a relation encoder-decoder pipeline stacked on top of an object encoder-decoder backbone. Unfortunately, current SGG methods suffer from an information loss regarding the entities local-level cues during the relation encoding process. To mitigate this, we introduce the Vision rElation TransfOrmer (VETO), consisting of a novel local-level entity relation encoder. We further observe that many existing SGG methods claim to be unbiased, but are still biased towards either head or tail classes. To overcome this bias, we introduce a Mutually Exclusive ExperT (MEET) learning strategy that captures important relation features without bias towards head or tail classes. Experimental results on the VG and GQA datasets demonstrate that VETO + MEET boosts the predictive performance by up to 47 percentage over the state of the art while being 10 times smaller.
V-LoL: A Diagnostic Dataset for Visual Logical Learning
Helff, Lukas, Stammer, Wolfgang, Shindo, Hikaru, Dhami, Devendra Singh, Kersting, Kristian
Despite the successes of recent developments in visual AI, different shortcomings still exist; from missing exact logical reasoning, to abstract generalization abilities, to understanding complex and noisy scenes. Unfortunately, existing benchmarks, were not designed to capture more than a few of these aspects. Whereas deep learning datasets focus on visually complex data but simple visual reasoning tasks, inductive logic datasets involve complex logical learning tasks, however, lack the visual component. To address this, we propose the visual logical learning dataset, V-LoL, that seamlessly combines visual and logical challenges. Notably, we introduce the first instantiation of V-LoL, V-LoL-Trains, -- a visual rendition of a classic benchmark in symbolic AI, the Michalski train problem. By incorporating intricate visual scenes and flexible logical reasoning tasks within a versatile framework, V-LoL-Trains provides a platform for investigating a wide range of visual logical learning challenges. We evaluate a variety of AI systems including traditional symbolic AI, neural AI, as well as neuro-symbolic AI. Our evaluations demonstrate that even state-of-the-art AI faces difficulties in dealing with visual logical learning challenges, highlighting unique advantages and limitations specific to each methodology. Overall, V-LoL opens up new avenues for understanding and enhancing current abilities in visual logical learning for AI systems.
Learning Differentiable Logic Programs for Abstract Visual Reasoning
Shindo, Hikaru, Pfanschilling, Viktor, Dhami, Devendra Singh, Kersting, Kristian
Visual reasoning is essential for building intelligent agents that understand the world and perform problem-solving beyond perception. Differentiable forward reasoning has been developed to integrate reasoning with gradient-based machine learning paradigms. However, due to the memory intensity, most existing approaches do not bring the best of the expressivity of first-order logic, excluding a crucial ability to solve abstract visual reasoning, where agents need to perform reasoning by using analogies on abstract concepts in different scenarios. To overcome this problem, we propose NEUro-symbolic Message-pAssiNg reasoNer (NEUMANN), which is a graph-based differentiable forward reasoner, passing messages in a memory-efficient manner and handling structured programs with functors. Moreover, we propose a computationally-efficient structure learning algorithm to perform explanatory program induction on complex visual scenes. To evaluate, in addition to conventional visual reasoning tasks, we propose a new task, visual reasoning behind-the-scenes, where agents need to learn abstract programs and then answer queries by imagining scenes that are not observed. We empirically demonstrate that NEUMANN solves visual reasoning tasks efficiently, outperforming neural, symbolic, and neuro-symbolic baselines.
Scalable Neural-Probabilistic Answer Set Programming
Skryagin, Arseny, Ochs, Daniel, Dhami, Devendra Singh, Kersting, Kristian
The goal of combining the robustness of neural networks and the expressiveness of symbolic methods has rekindled the interest in Neuro-Symbolic AI. Deep Probabilistic Programming Languages (DPPLs) have been developed for probabilistic logic programming to be carried out via the probability estimations of deep neural networks. However, recent SOTA DPPL approaches allow only for limited conditional probabilistic queries and do not offer the power of true joint probability estimation. In our work, we propose an easy integration of tractable probabilistic inference within a DPPL. To this end, we introduce SLASH, a novel DPPL that consists of Neural-Probabilistic Predicates (NPPs) and a logic program, united via answer set programming (ASP). NPPs are a novel design principle allowing for combining all deep model types and combinations thereof to be represented as a single probabilistic predicate. In this context, we introduce a novel $+/-$ notation for answering various types of probabilistic queries by adjusting the atom notations of a predicate. To scale well, we show how to prune the stochastically insignificant parts of the (ground) program, speeding up reasoning without sacrificing the predictive performance. We evaluate SLASH on a variety of different tasks, including the benchmark task of MNIST addition and Visual Question Answering (VQA).
FEATHERS: Federated Architecture and Hyperparameter Search
Seng, Jonas, Prasad, Pooja, Mundt, Martin, Dhami, Devendra Singh, Kersting, Kristian
Deep neural architectures have profound impact on achieved performance in many of today's AI tasks, yet, their design still heavily relies on human prior knowledge and experience. Neural architecture search (NAS) together with hyperparameter optimization (HO) helps to reduce this dependence. However, state of the art NAS and HO rapidly become infeasible with increasing amount of data being stored in a distributed fashion, typically violating data privacy regulations such as GDPR and CCPA. As a remedy, we introduce FEATHERS - $\textbf{FE}$derated $\textbf{A}$rchi$\textbf{T}$ecture and $\textbf{H}$yp$\textbf{ER}$parameter $\textbf{S}$earch, a method that not only optimizes both neural architectures and optimization-related hyperparameters jointly in distributed data settings, but further adheres to data privacy through the use of differential privacy (DP). We show that FEATHERS efficiently optimizes architectural and optimization-related hyperparameters alike, while demonstrating convergence on classification tasks at no detriment to model performance when complying with privacy constraints.
Pearl Causal Hierarchy on Image Data: Intricacies & Challenges
Zečević, Matej, Willig, Moritz, Dhami, Devendra Singh, Kersting, Kristian
Many researchers have voiced their support towards Pearl's counterfactual theory of causation as a stepping stone for AI/ML research's ultimate goal of intelligent systems. As in any other growing subfield, patience seems to be a virtue since significant progress on integrating notions from both fields takes time, yet, major challenges such as the lack of ground truth benchmarks or a unified perspective on classical problems such as computer vision seem to hinder the momentum of the research movement. This present work exemplifies how the Pearl Causal Hierarchy (PCH) can be understood on image data by providing insights on several intricacies but also challenges that naturally arise when applying key concepts from Pearlian causality to the study of image data.
Can Foundation Models Talk Causality?
Willig, Moritz, Zečević, Matej, Dhami, Devendra Singh, Kersting, Kristian
Foundation models are subject to an ongoing heated debate, leaving open the question of progress towards AGI and dividing the community into two camps: the ones who see the arguably impressive results as evidence to the scaling hypothesis, and the others who are worried about the lack of interpretability and reasoning capabilities. By investigating to which extent causal representations might be captured by these large scale language models, we make a humble efforts towards resolving the ongoing philosophical conflicts.
Causal Explanations of Structural Causal Models
Zečević, Matej, Dhami, Devendra Singh, Rothkopf, Constantin A., Kersting, Kristian
In explanatory interactive learning (XIL) the user queries the learner, then the learner explains its answer to the user and finally the loop repeats. XIL is attractive for two reasons, (1) the learner becomes better and (2) the user's trust increases. For both reasons to hold, the learner's explanations must be useful to the user and the user must be allowed to ask useful questions. Ideally, both questions and explanations should be grounded in a causal model since they avoid spurious fallacies. Ultimately, we seem to seek a causal variant of XIL. The question part on the user's end we believe to be solved since the user's mental model can provide the causal model. But how would the learner provide causal explanations? In this work we show that existing explanation methods are not guaranteed to be causal even when provided with a Structural Causal Model (SCM). Specifically, we use the popular, proclaimed causal explanation method CXPlain to illustrate how the generated explanations leave open the question of truly causal explanations. Thus as a step towards causal XIL, we propose a solution to the lack of causal explanations. We solve this problem by deriving from first principles an explanation method that makes full use of a given SCM, which we refer to as SC$\textbf{E}$ ($\textbf{E}$ standing for explanation). Since SCEs make use of structural information, any causal graph learner can now provide human-readable explanations. We conduct several experiments including a user study with 22 participants to investigate the virtue of SCE as causal explanations of SCMs.