Dey, Jayanta
Out-of-distribution and in-distribution posterior calibration using Kernel Density Polytopes
Dey, Jayanta, De Silva, Ashwin, LeVine, Will, Shin, Jong M., Xu, Haoyin, Geisa, Ali, Chu, Tiffany, Isik, Leyla, Vogelstein, Joshua T.
Any reasonable machine learning (ML) model should not only interpolate efficiently in between the training samples provided (in-distribution region), but also approach the extrapolative or out-of-distribution (OOD) region without being overconfident. Our experiment on human subjects justifies the aforementioned properties for human intelligence as well. Many state-of-the-art algorithms have tried to fix the overconfidence problem of ML models in the OOD region. However, in doing so, they have often impaired the in-distribution performance of the model. Our key insight is that ML models partition the feature space into polytopes and learn constant (random forests) or affine (ReLU networks) functions over those polytopes. This leads to the OOD overconfidence problem for the polytopes which lie in the training data boundary and extend to infinity. To resolve this issue, we propose kernel density methods that fit Gaussian kernel over the polytopes, which are learned using ML models. Specifically, we introduce two variants of kernel density polytopes: Kernel Density Forest (KDF) and Kernel Density Network (KDN) based on random forests and deep networks, respectively. Studies on various simulation settings show that both KDF and KDN achieve uniform confidence over the classes in the OOD region while maintaining good in-distribution accuracy compared to that of their respective parent models.
Prospective Learning: Back to the Future
Vogelstein, Joshua T., Verstynen, Timothy, Kording, Konrad P., Isik, Leyla, Krakauer, John W., Etienne-Cummings, Ralph, Ogburn, Elizabeth L., Priebe, Carey E., Burns, Randal, Kutten, Kwame, Knierim, James J., Potash, James B., Hartung, Thomas, Smirnova, Lena, Worley, Paul, Savonenko, Alena, Phillips, Ian, Miller, Michael I., Vidal, Rene, Sulam, Jeremias, Charles, Adam, Cowan, Noah J., Bichuch, Maxim, Venkataraman, Archana, Li, Chen, Thakor, Nitish, Kebschull, Justus M, Albert, Marilyn, Xu, Jinchong, Shuler, Marshall Hussain, Caffo, Brian, Ratnanather, Tilak, Geisa, Ali, Roh, Seung-Eon, Yezerets, Eva, Madhyastha, Meghana, How, Javier J., Tomita, Tyler M., Dey, Jayanta, Ningyuan, null, Huang, null, Shin, Jong M., Kinfu, Kaleab Alemayehu, Chaudhari, Pratik, Baker, Ben, Schapiro, Anna, Jayaraman, Dinesh, Eaton, Eric, Platt, Michael, Ungar, Lyle, Wehbe, Leila, Kepecs, Adam, Christensen, Amy, Osuagwu, Onyema, Brunton, Bing, Mensh, Brett, Muotri, Alysson R., Silva, Gabriel, Puppo, Francesca, Engert, Florian, Hillman, Elizabeth, Brown, Julia, White, Chris, Yang, Weiwei
Research on both natural intelligence (NI) and artificial intelligence (AI) generally assumes that the future resembles the past: intelligent agents or systems (what we call 'intelligence') observe and act on the world, then use this experience to act on future experiences of the same kind. We call this 'retrospective learning'. For example, an intelligence may see a set of pictures of objects, along with their names, and learn to name them. A retrospective learning intelligence would merely be able to name more pictures of the same objects. We argue that this is not what true intelligence is about. In many real world problems, both NIs and AIs will have to learn for an uncertain future. Both must update their internal models to be useful for future tasks, such as naming fundamentally new objects and using these objects effectively in a new context or to achieve previously unencountered goals. This ability to learn for the future we call 'prospective learning'. We articulate four relevant factors that jointly define prospective learning. Continual learning enables intelligences to remember those aspects of the past which it believes will be most useful in the future. Prospective constraints (including biases and priors) facilitate the intelligence finding general solutions that will be applicable to future problems. Curiosity motivates taking actions that inform future decision making, including in previously unmet situations. Causal estimation enables learning the structure of relations that guide choosing actions for specific outcomes, even when the specific action-outcome contingencies have never been observed before. We argue that a paradigm shift from retrospective to prospective learning will enable the communities that study intelligence to unite and overcome existing bottlenecks to more effectively explain, augment, and engineer intelligences.
Streaming Decision Trees and Forests
Xu, Haoyin, Dey, Jayanta, Panda, Sambit, Vogelstein, Joshua T.
Machine learning has successfully leveraged modern data and provided computational solutions to innumerable real-world problems, including physical and biomedical discoveries. Currently, estimators could handle both scenarios with all samples available and situations requiring continuous updates. However, there is still room for improvement on streaming algorithms based on batch decision trees and random forests, which are the leading methods in batch data tasks. In this paper, we explore the simplest partial fitting algorithm to extend batch trees and test our models: stream decision tree (SDT) and stream decision forest (SDF) on three classification tasks of varying complexities. For reference, both existing streaming trees (Hoeffding trees and Mondrian forests) and batch estimators are included in the experiments. In all three tasks, SDF consistently produces high accuracy, whereas existing estimators encounter space restraints and accuracy fluctuations. Thus, our streaming trees and forests show great potential for further improvements, which are good candidates for solving problems like distribution drift and transfer learning.
A general approach to progressive learning
Vogelstein, Joshua T., Helm, Hayden S., Mehta, Ronak D., Dey, Jayanta, LeVine, Will, Yang, Weiwei, Tower, Bryan, Larson, Jonathan, White, Chris, Priebe, Carey E.
In biological learning, data are used to improve performance simultaneously on the current task, as well as previously encountered and as yet unencountered tasks. In contrast, classical machine learning starts from a blank slate, or tabula rasa, using data only for the single task at hand. While typical transfer learning algorithms can improve performance on future tasks, their performance on prior tasks degrades upon learning new tasks (called catastrophic forgetting). Many recent approaches have attempted to maintain performance given new tasks. But striving to avoid forgetting sets the goal unnecessarily low: the goal of progressive learning, whether biological or artificial, is to improve performance on all tasks (including past and future) with any new data. We propose representation ensembling, as opposed to learner ensembling (e.g., bagging), to address progressive learning. We show that representation ensembling -- including representations learned by decision forests or deep network -- uniquely demonstrates improved performance on both past and future tasks in a variety of simulated and real data scenarios, including vision, language, and adversarial tasks, with or without resource constraints. Beyond progressive learning, this work has immediate implications with regards to mitigating batch effects and federated learning applications. We expect a deeper understanding of the mechanisms underlying biological progressive learning to enable further improvements in machine progressive learning.
An Ensemble SVM-based Approach for Voice Activity Detection
Dey, Jayanta, Hossain, Md Sanzid Bin, Haque, Mohammad Ariful
Voice activity detection (VAD), used as the front end of speech enhancement, speech and speaker recognition algorithms, determines the overall accuracy and efficiency of the algorithms. Therefore, a VAD with low complexity and high accuracy is highly desirable for speech processing applications. In this paper, we propose a novel training method on large dataset for supervised learning-based VAD system using support vector machine (SVM). Despite of high classification accuracy of support vector machines (SVM), trivial SVM is not suitable for classification of large data sets needed for a good VAD system because of high training complexity. To overcome this problem, a novel ensemble-based approach using SVM has been proposed in this paper.The performance of the proposed ensemble structure has been compared with a feedforward neural network (NN). Although NN performs better than single SVM-based VAD trained on a small portion of the training data, ensemble SVM gives accuracy comparable to neural network-based VAD. Ensemble SVM and NN give 88.74% and 86.28% accuracy respectively whereas the stand-alone SVM shows 57.05% accuracy on average on the test dataset.