Devroye, Luc
A note on estimating the dimension from a random geometric graph
Atamanchuk, Caelan, Devroye, Luc, Lugosi, Gabor
Let $G_n$ be a random geometric graph with vertex set $[n]$ based on $n$ i.i.d.\ random vectors $X_1,\ldots,X_n$ drawn from an unknown density $f$ on $\R^d$. An edge $(i,j)$ is present when $\|X_i -X_j\| \le r_n$, for a given threshold $r_n$ possibly depending upon $n$, where $\| \cdot \|$ denotes Euclidean distance. We study the problem of estimating the dimension $d$ of the underlying space when we have access to the adjacency matrix of the graph but do not know $r_n$ or the vectors $X_i$. The main result of the paper is that there exists an estimator of $d$ that converges to $d$ in probability as $n \to \infty$ for all densities with $\int f^5 < \infty$ whenever $n^{3/2} r_n^d \to \infty$ and $r_n = o(1)$. The conditions allow very sparse graphs since when $n^{3/2} r_n^d \to 0$, the graph contains isolated edges only, with high probability. We also show that, without any condition on the density, a consistent estimator of $d$ exists when $n r_n^d \to \infty$ and $r_n = o(1)$.
Broadcasting in random recursive dags
Briend, Simon, Devroye, Luc, Lugosi, Gabor
A uniform $k$-{\sc dag} generalizes the uniform random recursive tree by picking $k$ parents uniformly at random from the existing nodes. It starts with $k$ ''roots''. Each of the $k$ roots is assigned a bit. These bits are propagated by a noisy channel. The parents' bits are flipped with probability $p$, and a majority vote is taken. When all nodes have received their bits, the $k$-{\sc dag} is shown without identifying the roots. The goal is to estimate the majority bit among the roots. We identify the threshold for $p$ as a function of $k$ below which the majority rule among all nodes yields an error $c+o(1)$ with $c<1/2$. Above the threshold the majority rule errs with probability $1/2+o(1)$.
Consistent Density Estimation Under Discrete Mixture Models
Devroye, Luc, Dytso, Alex
This work considers a problem of estimating a mixing probability density $f$ in the setting of discrete mixture models. The paper consists of three parts. The first part focuses on the construction of an $L_1$ consistent estimator of $f$. In particular, under the assumptions that the probability measure $\mu$ of the observation is atomic, and the map from $f$ to $\mu$ is bijective, it is shown that there exists an estimator $f_n$ such that for every density $f$ $\lim_{n\to \infty} \mathbb{E} \left[ \int |f_n -f | \right]=0$. The second part discusses the implementation details. Specifically, it is shown that the consistency for every $f$ can be attained with a computationally feasible estimator. The third part, as a study case, considers a Poisson mixture model. In particular, it is shown that in the Poisson noise setting, the bijection condition holds and, hence, estimation can be performed consistently for every $f$.