Goto

Collaborating Authors

 Devon Hjelm


Iterative Refinement of the Approximate Posterior for Directed Belief Networks

Neural Information Processing Systems

Variational methods that rely on a recognition network to approximate the posterior of directed graphical models offer better inference and learning than previous methods. Recent advances that exploit the capacity and flexibility in this approach have expanded what kinds of models can be trained. However, as a proposal for the posterior, the capacity of the recognition network is limited, which can constrain the representational power of the generative model and increase the variance of Monte Carlo estimates. To address these issues, we introduce an iterative refinement procedure for improving the approximate posterior of the recognition network and show that training with the refined posterior is competitive with state-of-the-art methods. The advantages of refinement are further evident in an increased effective sample size, which implies a lower variance of gradient estimates.


GibbsNet: Iterative Adversarial Inference for Deep Graphical Models

Neural Information Processing Systems

Directed latent variable models that formulate the joint distribution as p(x, z) = p(z)p(x | z) have the advantage of fast and exact sampling. However, these models have the weakness of needing to specify p(z), often with a simple fixed prior that limits the expressiveness of the model. Undirected latent variable models discard the requirement that p(z) be specified with a prior, yet sampling from them generally requires an iterative procedure such as blocked Gibbs-sampling that may require many steps to draw samples from the joint distribution p(x, z). We propose a novel approach to learning the joint distribution between the data and a latent code which uses an adversarially learned iterative procedure to gradually refine the joint distribution, p(x, z), to better match with the data distribution on each step. GibbsNet is the best of both worlds both in theory and in practice. Achieving the speed and simplicity of a directed latent variable model, it is guaranteed (assuming the adversarial game reaches the virtual training criteria global minimum) to produce samples from p(x, z) with only a few sampling iterations. Achieving the expressiveness and flexibility of an undirected latent variable model, GibbsNet does away with the need for an explicit p(z) and has the ability to do attribute prediction, class-conditional generation, and joint image-attribute modeling in a single model which is not trained for any of these specific tasks. We show empirically that GibbsNet is able to learn a more complex p(z) and show that this leads to improved inpainting and iterative refinement of p(x, z) for dozens of steps and stable generation without collapse for thousands of steps, despite being trained on only a few steps.


GibbsNet: Iterative Adversarial Inference for Deep Graphical Models

Neural Information Processing Systems

Directed latent variable models that formulate the joint distribution as p(x, z) = p(z)p(x | z) have the advantage of fast and exact sampling. However, these models have the weakness of needing to specify p(z), often with a simple fixed prior that limits the expressiveness of the model. Undirected latent variable models discard the requirement that p(z) be specified with a prior, yet sampling from them generally requires an iterative procedure such as blocked Gibbs-sampling that may require many steps to draw samples from the joint distribution p(x, z). We propose a novel approach to learning the joint distribution between the data and a latent code which uses an adversarially learned iterative procedure to gradually refine the joint distribution, p(x, z), to better match with the data distribution on each step. GibbsNet is the best of both worlds both in theory and in practice. Achieving the speed and simplicity of a directed latent variable model, it is guaranteed (assuming the adversarial game reaches the virtual training criteria global minimum) to produce samples from p(x, z) with only a few sampling iterations. Achieving the expressiveness and flexibility of an undirected latent variable model, GibbsNet does away with the need for an explicit p(z) and has the ability to do attribute prediction, class-conditional generation, and joint image-attribute modeling in a single model which is not trained for any of these specific tasks. We show empirically that GibbsNet is able to learn a more complex p(z) and show that this leads to improved inpainting and iterative refinement of p(x, z) for dozens of steps and stable generation without collapse for thousands of steps, despite being trained on only a few steps.