Deuser, Fabian
Unimodal Multi-Task Fusion for Emotional Mimicry Intensity Prediction
Hallmen, Tobias, Deuser, Fabian, Oswald, Norbert, André, Elisabeth
In this research, we introduce a novel methodology for assessing Emotional Mimicry Intensity (EMI) as part of the 6th Workshop and Competition on Affective Behavior Analysis in-the-wild. Our methodology utilises the Wav2Vec 2.0 architecture, which has been pre-trained on an extensive podcast dataset, to capture a wide array of audio features that include both linguistic and paralinguistic components. We refine our feature extraction process by employing a fusion technique that combines individual features with a global mean vector, thereby embedding a broader contextual understanding into our analysis. A key aspect of our approach is the multi-task fusion strategy that not only leverages these features but also incorporates a pre-trained Valence-Arousal-Dominance (VAD) model. This integration is designed to refine emotion intensity prediction by concurrently processing multiple emotional dimensions, thereby embedding a richer contextual understanding into our framework. For the temporal analysis of audio data, our feature fusion process utilises a Long Short-Term Memory (LSTM) network. This approach, which relies solely on the provided audio data, shows marked advancements over the existing baseline, offering a more comprehensive understanding of emotional mimicry in naturalistic settings, achieving the second place in the EMI challenge.
SoccerNet 2023 Challenges Results
Cioppa, Anthony, Giancola, Silvio, Somers, Vladimir, Magera, Floriane, Zhou, Xin, Mkhallati, Hassan, Deliège, Adrien, Held, Jan, Hinojosa, Carlos, Mansourian, Amir M., Miralles, Pierre, Barnich, Olivier, De Vleeschouwer, Christophe, Alahi, Alexandre, Ghanem, Bernard, Van Droogenbroeck, Marc, Kamal, Abdullah, Maglo, Adrien, Clapés, Albert, Abdelaziz, Amr, Xarles, Artur, Orcesi, Astrid, Scott, Atom, Liu, Bin, Lim, Byoungkwon, Chen, Chen, Deuser, Fabian, Yan, Feng, Yu, Fufu, Shitrit, Gal, Wang, Guanshuo, Choi, Gyusik, Kim, Hankyul, Guo, Hao, Fahrudin, Hasby, Koguchi, Hidenari, Ardö, Håkan, Salah, Ibrahim, Yerushalmy, Ido, Muhammad, Iftikar, Uchida, Ikuma, Be'ery, Ishay, Rabarisoa, Jaonary, Lee, Jeongae, Fu, Jiajun, Yin, Jianqin, Xu, Jinghang, Nang, Jongho, Denize, Julien, Li, Junjie, Zhang, Junpei, Kim, Juntae, Synowiec, Kamil, Kobayashi, Kenji, Zhang, Kexin, Habel, Konrad, Nakajima, Kota, Jiao, Licheng, Ma, Lin, Wang, Lizhi, Wang, Luping, Li, Menglong, Zhou, Mengying, Nasr, Mohamed, Abdelwahed, Mohamed, Liashuha, Mykola, Falaleev, Nikolay, Oswald, Norbert, Jia, Qiong, Pham, Quoc-Cuong, Song, Ran, Hérault, Romain, Peng, Rui, Chen, Ruilong, Liu, Ruixuan, Baikulov, Ruslan, Fukushima, Ryuto, Escalera, Sergio, Lee, Seungcheon, Chen, Shimin, Ding, Shouhong, Someya, Taiga, Moeslund, Thomas B., Li, Tianjiao, Shen, Wei, Zhang, Wei, Li, Wei, Dai, Wei, Luo, Weixin, Zhao, Wending, Zhang, Wenjie, Yang, Xinquan, Ma, Yanbiao, Joo, Yeeun, Zeng, Yingsen, Gan, Yiyang, Zhu, Yongqiang, Zhong, Yujie, Ruan, Zheng, Li, Zhiheng, Huang, Zhijian, Meng, Ziyu
The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on https://www.soccer-net.org. Baselines and development kits can be found on https://github.com/SoccerNet.