Dethlefs, Nina
SafeLLM: Domain-Specific Safety Monitoring for Large Language Models: A Case Study of Offshore Wind Maintenance
Walker, Connor, Rothon, Callum, Aslansefat, Koorosh, Papadopoulos, Yiannis, Dethlefs, Nina
The Offshore Wind (OSW) industry is experiencing significant expansion, resulting in increased Operations \& Maintenance (O\&M) costs. Intelligent alarm systems offer the prospect of swift detection of component failures and process anomalies, enabling timely and precise interventions that could yield reductions in resource expenditure, as well as scheduled and unscheduled downtime. This paper introduces an innovative approach to tackle this challenge by capitalising on Large Language Models (LLMs). We present a specialised conversational agent that incorporates statistical techniques to calculate distances between sentences for the detection and filtering of hallucinations and unsafe output. This potentially enables improved interpretation of alarm sequences and the generation of safer repair action recommendations by the agent. Preliminary findings are presented with the approach applied to ChatGPT-4 generated test sentences. The limitation of using ChatGPT-4 and the potential for enhancement of this agent through re-training with specialised OSW datasets are discussed.
A Deep Learning Framework for Wind Turbine Repair Action Prediction Using Alarm Sequences and Long Short Term Memory Algorithms
Walker, Connor, Rothon, Callum, Aslansefat, Koorosh, Papadopoulos, Yiannis, Dethlefs, Nina
With an increasing emphasis on driving down the costs of Operations and Maintenance (O&M) in the Offshore Wind (OSW) sector, comes the requirement to explore new methodology and applications of Deep Learning (DL) to the domain. Condition-based monitoring (CBM) has been at the forefront of recent research developing alarm-based systems and data-driven decision making. This paper provides a brief insight into the research being conducted in this area, with a specific focus on alarm sequence modelling and the associated challenges faced in its implementation. The paper proposes a novel idea to predict a set of relevant repair actions from an input sequence of alarm sequences, comparing Long Short-term Memory (LSTM) and Bidirectional LSTM (biLSTM) models. Achieving training accuracy results of up to 80.23%, and test accuracy results of up to 76.01% with biLSTM gives a strong indication to the potential benefits of the proposed approach that can be furthered in future research. The paper introduces a framework that integrates the proposed approach into O$\&$M procedures and discusses the potential benefits which include the reduction of a confusing plethora of alarms, as well as unnecessary vessel transfers to the turbines for fault diagnosis and correction.
XAI4Wind: A Multimodal Knowledge Graph Database for Explainable Decision Support in Operations & Maintenance of Wind Turbines
Chatterjee, Joyjit, Dethlefs, Nina
Condition-based monitoring (CBM) has been widely utilised in the wind industry for monitoring operational inconsistencies and failures in turbines, with techniques ranging from signal processing and vibration analysis to artificial intelligence (AI) models using Supervisory Control & Acquisition (SCADA) data. However, existing studies do not present a concrete basis to facilitate explainable decision support in operations and maintenance (O&M), particularly for automated decision support through recommendation of appropriate maintenance action reports corresponding to failures predicted by CBM techniques. Knowledge graph databases (KGs) model a collection of domain-specific information and have played an intrinsic role for real-world decision support in domains such as healthcare and finance, but have seen very limited attention in the wind industry. We propose XAI4Wind, a multimodal knowledge graph for explainable decision support in real-world operational turbines and demonstrate through experiments several use-cases of the proposed KG towards O&M planning through interactive query and reasoning and providing novel insights using graph data science algorithms. The proposed KG combines multimodal knowledge like SCADA parameters and alarms with natural language maintenance actions, images etc. By integrating our KG with an Explainable AI model for anomaly prediction, we show that it can provide effective human-intelligible O&M strategies for predicted operational inconsistencies in various turbine sub-components. This can help instil better trust and confidence in conventionally black-box AI models. We make our KG publicly available and envisage that it can serve as the building ground for providing autonomous decision support in the wind industry.
Reports of the AAAI 2014 Conference Workshops
Albrecht, Stefano V. (University of Edinburgh) | Barreto, André M. S. (Brazilian National Laboratory for Scientific Computing) | Braziunas, Darius (Kobo Inc.) | Buckeridge, David L. (McGill University) | Cuayáhuitl, Heriberto (Heriot-Watt University) | Dethlefs, Nina (Heriot-Watt University) | Endres, Markus (University of Augsburg) | Farahmand, Amir-massoud (Carnegie Mellon University) | Fox, Mark (University of Toronto) | Frommberger, Lutz (University of Bremen) | Ganzfried, Sam (Carnegie Mellon University) | Gil, Yolanda (University of Southern California) | Guillet, Sébastien (Université du Québec à Chicoutimi) | Hunter, Lawrence E. (University of Colorado School of Medicine) | Jhala, Arnav (University of California Santa Cruz) | Kersting, Kristian (Technical University of Dortmund) | Konidaris, George (Massachusetts Institute of Technology) | Lecue, Freddy (IBM Research) | McIlraith, Sheila (University of Toronto) | Natarajan, Sriraam (Indiana University) | Noorian, Zeinab (University of Saskatchewan) | Poole, David (University of British Columbia) | Ronfard, Rémi (University of Grenoble) | Saffiotti, Alessandro (Orebro University) | Shaban-Nejad, Arash (McGill University) | Srivastava, Biplav (IBM Research) | Tesauro, Gerald (IBM Research) | Uceda-Sosa, Rosario (IBM Research) | Broeck, Guy Van den (Katholieke Universiteit Leuven) | Otterlo, Martijn van (Radboud University Nijmegen) | Wallace, Byron C. (University of Texas) | Weng, Paul (Pierre and Marie Curie University) | Wiens, Jenna (University of Michigan) | Zhang, Jie (Nanyang Technological University)
The AAAI-14 Workshop program was held Sunday and Monday, July 27–28, 2012, at the Québec City Convention Centre in Québec, Canada. The AAAI-14 workshop program included fifteen workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Robotics; Artificial Intelligence Applied to Assistive Technologies and Smart Environments; Cognitive Computing for Augmented Human Intelligence; Computer Poker and Imperfect Information; Discovery Informatics; Incentives and Trust in Electronic Communities; Intelligent Cinematography and Editing; Machine Learning for Interactive Systems: Bridging the Gap between Perception, Action and Communication; Modern Artificial Intelligence for Health Analytics; Multiagent Interaction without Prior Coordination; Multidisciplinary Workshop on Advances in Preference Handling; Semantic Cities -- Beyond Open Data to Models, Standards and Reasoning; Sequential Decision Making with Big Data; Statistical Relational AI; and The World Wide Web and Public Health Intelligence. This article presents short summaries of those events.
Reports of the AAAI 2014 Conference Workshops
Albrecht, Stefano V. (University of Edinburgh) | Barreto, André M. S. (Brazilian National Laboratory for Scientific Computing) | Braziunas, Darius (Kobo Inc.) | Buckeridge, David L. (McGill University) | Cuayáhuitl, Heriberto (Heriot-Watt University) | Dethlefs, Nina (Heriot-Watt University) | Endres, Markus (University of Augsburg) | Farahmand, Amir-massoud (Carnegie Mellon University) | Fox, Mark (University of Toronto) | Frommberger, Lutz (University of Bremen) | Ganzfried, Sam (Carnegie Mellon University) | Gil, Yolanda (University of Southern California) | Guillet, Sébastien (Université du Québec à Chicoutimi) | Hunter, Lawrence E. (University of Colorado School of Medicine) | Jhala, Arnav (University of California Santa Cruz) | Kersting, Kristian (Technical University of Dortmund) | Konidaris, George (Massachusetts Institute of Technology) | Lecue, Freddy (IBM Research) | McIlraith, Sheila (University of Toronto) | Natarajan, Sriraam (Indiana University) | Noorian, Zeinab (University of Saskatchewan) | Poole, David (University of British Columbia) | Ronfard, Rémi (University of Grenoble) | Saffiotti, Alessandro (Orebro University) | Shaban-Nejad, Arash (McGill University) | Srivastava, Biplav (IBM Research) | Tesauro, Gerald (IBM Research) | Uceda-Sosa, Rosario (IBM Research) | Broeck, Guy Van den (Katholieke Universiteit Leuven) | Otterlo, Martijn van (Radboud University Nijmegen) | Wallace, Byron C. (University of Texas) | Weng, Paul (Pierre and Marie Curie University) | Wiens, Jenna (University of Michigan) | Zhang, Jie (Nanyang Technological University)
The AAAI-14 Workshop program was held Sunday and Monday, July 27–28, 2012, at the Québec City Convention Centre in Québec, Canada. Canada. The AAAI-14 workshop program included fifteen workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Robotics; Artificial Intelligence Applied to Assistive Technologies and Smart Environments; Cognitive Computing for Augmented Human Intelligence; Computer Poker and Imperfect Information; Discovery Informatics; Incentives and Trust in Electronic Communities; Intelligent Cinematography and Editing; Machine Learning for Interactive Systems: Bridging the Gap between Perception, Action and Communication; Modern Artificial Intelligence for Health Analytics; Multiagent Interaction without Prior Coordination; Multidisciplinary Workshop on Advances in Preference Handling; Semantic Cities — Beyond Open Data to Models, Standards and Reasoning; Sequential Decision Making with Big Data; Statistical Relational AI; and The World Wide Web and Public Health Intelligence. This article presents short summaries of those events.
Preface
Cuayáhuitl, Heriberto (Heriot-Watt University) | Frommberger, Lutz (University of Bremen) | Dethlefs, Nina (Heriot-Watt University) | Otterlo, Martijn van (Radboud University)
This workshop contains papers with a strong relationship to interactive systems and robots in the following topics (in no particular order): robot learning from natural language interactions; robot learning from social multimodal interactions; robot learning using crowdsourcing; reinforcement learning with reward inference of conversational behaviors; reinforcement and neural learning to transfer learnt behaviors across tasks; learning from demonstration for human-robot interaction/collaboration; supervised learning for coaching physical skills; visually-aware reinforcement learning in unknown environments; Markov decision processes for adaptive interactions in video games; and Markov decision processes for grounding natural language commands.