Not enough data to create a plot.
Try a different view from the menu above.
Desmarais, Bruce
GenAI vs. Human Fact-Checkers: Accurate Ratings, Flawed Rationales
Tai, Yuehong Cassandra, Patni, Khushi Navin, Hemauer, Nicholas Daniel, Desmarais, Bruce, Lin, Yu-Ru
Despite recent advances in understanding the capabilities and limits of generative artificial intelligence (GenAI) models, we are just beginning to understand their capacity to assess and reason about the veracity of content. We evaluate multiple GenAI models across tasks that involve the rating of, and perceived reasoning about, the credibility of information. The information in our experiments comes from content that subnational U.S. politicians post to Facebook. We find that GPT-4o, one of the most used AI models in consumer applications, outperforms other models, but all models exhibit only moderate agreement with human coders. Importantly, even when GenAI models accurately identify low-credibility content, their reasoning relies heavily on linguistic features and ``hard'' criteria, such as the level of detail, source reliability, and language formality, rather than an understanding of veracity. We also assess the effectiveness of summarized versus full content inputs, finding that summarized content holds promise for improving efficiency without sacrificing accuracy. While GenAI has the potential to support human fact-checkers in scaling misinformation detection, our results caution against relying solely on these models.
Topic-Partitioned Multinetwork Embeddings
Krafft, Peter, Moore, Juston, Desmarais, Bruce, Wallach, Hanna M.
We introduce a new Bayesian admixture model intended for exploratory analysis ofcommunication networks--specifically, the discovery and visualization of topic-specific subnetworks in email data sets. Our model produces principled visualizations ofemail networks, i.e., visualizations that have precise mathematical interpretations in terms of our model and its relationship to the observed data. We validate our modeling assumptions by demonstrating that our model achieves better link prediction performance than three state-of-the-art network models and exhibits topic coherence comparable to that of latent Dirichlet allocation. We showcase our model's ability to discover and visualize topic-specific communication patternsusing a new email data set: the New Hanover County email network. We provide an extensive analysis of these communication patterns, leading us to recommend our model for any exploratory analysis of email networks or other similarly-structured communication data. Finally, we advocate for principled visualization asa primary objective in the development of new network models.