Dereka, Stanislav
Unveiling Empirical Pathologies of Laplace Approximation for Uncertainty Estimation
Zhdanov, Maksim, Dereka, Stanislav, Kolesnikov, Sergey
In this paper, we critically evaluate Bayesian methods for uncertainty estimation in deep learning, focusing on the widely applied Laplace approximation and its variants. Our findings reveal that the conventional method of fitting the Hessian matrix negatively impacts out-of-distribution (OOD) detection efficiency. We propose a different point of view, asserting that focusing solely on optimizing prior precision can yield more accurate uncertainty estimates in OOD detection while preserving adequate calibration metrics. Moreover, we demonstrate that this property is not connected to the training stage of a model but rather to its intrinsic properties. Through extensive experimental evaluation, we establish the superiority of our simplified approach over traditional methods in the out-of-distribution domain.
EXACT: How to Train Your Accuracy
Karpukhin, Ivan, Dereka, Stanislav, Kolesnikov, Sergey
Classification tasks are usually evaluated in terms of accuracy. However, accuracy is discontinuous and cannot be directly optimized using gradient ascent. Popular methods minimize cross-entropy, hinge loss, or other surrogate losses, which can lead to suboptimal results. In this paper, we propose a new optimization framework by introducing stochasticity to a model's output and optimizing expected accuracy, i.e. accuracy of the stochastic model. Extensive experiments on linear models and deep image classification show that the proposed optimization method is a powerful alternative to widely used classification losses.
Diversifying Deep Ensembles: A Saliency Map Approach for Enhanced OOD Detection, Calibration, and Accuracy
Dereka, Stanislav, Karpukhin, Ivan, Zhdanov, Maksim, Kolesnikov, Sergey
Deep ensembles are capable of achieving state-of-the-art results in classification and out-of-distribution (OOD) detection. However, their effectiveness is limited due to the homogeneity of learned patterns within ensembles. To overcome this issue, our study introduces Saliency Diversified Deep Ensemble (SDDE), a novel approach that promotes diversity among ensemble members by leveraging saliency maps. Through incorporating saliency map diversification, our method outperforms conventional ensemble techniques and improves calibration in multiple classification and OOD detection tasks. In particular, the proposed method achieves state-of-the-art OOD detection quality, calibration, and accuracy on multiple benchmarks, including CIFAR10/100 and large-scale ImageNet datasets.