Goto

Collaborating Authors

 Derbeko, Philip


Error Bounds for Transductive Learning via Compression and Clustering

Neural Information Processing Systems

This paper is concerned with transductive learning. Although transduction appears to be an easier task than induction, there have not been many provably useful algorithms and bounds for transduction. We present explicit error bounds for transduction and derive a general technique for devising bounds within this setting. The technique is applied to derive error bounds for compression schemes such as (transductive) SVMs and for transduction algorithms based on clustering.


Error Bounds for Transductive Learning via Compression and Clustering

Neural Information Processing Systems

This paper is concerned with transductive learning. Although transduction appears to be an easier task than induction, there have not been many provably useful algorithms and bounds for transduction. We present explicit error bounds for transduction and derive a general technique for devising bounds within this setting. The technique is applied to derive error bounds for compression schemes such as (transductive) SVMs and for transduction algorithms based on clustering.