Goto

Collaborating Authors

 Dennis, Simon


The Dynamical Principles of Storytelling

arXiv.org Artificial Intelligence

When considering the opening part of 1800 short stories, we find that the first dozen paragraphs of the average narrative follow an action principle as defined in arXiv:2309.06600. When the order of the paragraphs is shuffled, the average no longer exhibits this property. The findings show that there is a preferential direction we take in semantic space when starting a story, possibly related to a common Western storytelling tradition as implied by Aristotle in Poetics.


Narrative as a Dynamical System

arXiv.org Artificial Intelligence

There is increasing evidence that human activity in general, and narrative in particular, can be treated as a dynamical system in the physics sense; a system whose evolution is described by an action integral, such that the average of all possible paths from point A to point B is given by the extremum of the action. We create by construction three such paths by averaging about 500 different narratives, and we show that the average path is consistent with an action principle.


Direct memory access using two cues: Finding the intersection of sets in a connectionist model

Neural Information Processing Systems

For lack of alternative models, search and decision processes have provided the dominant paradigm for human memory access using two or more cues, despite evidence against search as an access process (Humphreys, Wiles & Bain, 1990). We present an alternative process to search, based on calculating the intersection of sets of targets activated by two or more cues. Two methods of computing the intersection are presented, one using information about the possible targets, the other constraining the cue-target strengths in the memory matrix. Analysis using orthogonal vectors to represent the cues and targets demonstrates the competence of both processes, and simulations using sparse distributed representations demonstrate the performance of the latter process for tasks involving 2 and 3 cues.


Direct memory access using two cues: Finding the intersection of sets in a connectionist model

Neural Information Processing Systems

For lack of alternative models, search and decision processes have provided the dominant paradigm for human memory access using two or more cues, despite evidence against search as an access process (Humphreys, Wiles & Bain, 1990). We present an alternative process to search, based on calculating the intersection of sets of targets activated by two or more cues. Two methods of computing the intersection are presented, one using information about the possible targets, the other constraining the cue-target strengths in the memory matrix. Analysis using orthogonal vectors to represent the cues and targets demonstrates the competence of both processes, and simulations using sparse distributed representations demonstrate the performance of the latter process for tasks involving 2 and 3 cues.


Direct memory access using two cues: Finding the intersection of sets in a connectionist model

Neural Information Processing Systems

For lack of alternative models, search and decision processes have provided the dominant paradigm for human memory access using two or more cues, despite evidence against search as an access process (Humphreys, Wiles & Bain, 1990). We present an alternative process to search, based on calculating the intersection of sets of targets activated by two or more cues. Two methods of computing the intersection are presented, one using information about the possible targets, the other constraining the cue-target strengths in the memory matrix. Analysis using orthogonal vectors to represent the cues and targets demonstrates the competence of both processes, and simulations using sparse distributed representations demonstrate the performance of the latter process for tasks involving 2 and 3 cues.