Goto

Collaborating Authors

 Denis, Pascal


Synthetic Data Generation for Intersectional Fairness by Leveraging Hierarchical Group Structure

arXiv.org Artificial Intelligence

In this paper, we introduce a data augmentation approach specifically tailored to enhance intersectional fairness in classification tasks. Our method capitalizes on the hierarchical structure inherent to intersectionality, by viewing groups as intersections of their parent categories. This perspective allows us to augment data for smaller groups by learning a transformation function that combines data from these parent groups. Our empirical analysis, conducted on four diverse datasets including both text and images, reveals that classifiers trained with this data augmentation approach achieve superior intersectional fairness and are more robust to ``leveling down'' when compared to methods optimizing traditional group fairness metrics.


Fair Without Leveling Down: A New Intersectional Fairness Definition

arXiv.org Artificial Intelligence

In this work, we consider the problem of intersectional group fairness in the classification setting, where the objective is to learn discrimination-free models in the presence of several intersecting sensitive groups. First, we illustrate various shortcomings of existing fairness measures commonly used to capture intersectional fairness. Then, we propose a new definition called the $\alpha$-Intersectional Fairness, which combines the absolute and the relative performance across sensitive groups and can be seen as a generalization of the notion of differential fairness. We highlight several desirable properties of the proposed definition and analyze its relation to other fairness measures. Finally, we benchmark multiple popular in-processing fair machine learning approaches using our new fairness definition and show that they do not achieve any improvement over a simple baseline. Our results reveal that the increase in fairness measured by previous definitions hides a "leveling down" effect, i.e., degrading the best performance over groups rather than improving the worst one.


A Tale of Two Laws of Semantic Change: Predicting Synonym Changes with Distributional Semantic Models

arXiv.org Artificial Intelligence

Lexical Semantic Change is the study of how the meaning of words evolves through time. Another related question is whether and how lexical relations over pairs of words, such as synonymy, change over time. There are currently two competing, apparently opposite hypotheses in the historical linguistic literature regarding how synonymous words evolve: the Law of Differentiation (LD) argues that synonyms tend to take on different meanings over time, whereas the Law of Parallel Change (LPC) claims that synonyms tend to undergo the same semantic change and therefore remain synonyms. So far, there has been little research using distributional models to assess to what extent these laws apply on historical corpora. In this work, we take a first step toward detecting whether LD or LPC operates for given word pairs. After recasting the problem into a more tractable task, we combine two linguistic resources to propose the first complete evaluation framework on this problem and provide empirical evidence in favor of a dominance of LD. We then propose various computational approaches to the problem using Distributional Semantic Models and grounded in recent literature on Lexical Semantic Change detection. Our best approaches achieve a balanced accuracy above 0.6 on our dataset. We discuss challenges still faced by these approaches, such as polysemy or the potential confusion between synonymy and hypernymy.


Exploring Category Structure with Contextual Language Models and Lexical Semantic Networks

arXiv.org Artificial Intelligence

Recent work on predicting category structure with distributional models, using either static word embeddings (Heyman and Heyman, 2019) or contextualized language models (CLMs) (Misra et al., 2021), report low correlations with human ratings, thus calling into question their plausibility as models of human semantic memory. In this work, we revisit this question testing a wider array of methods for probing CLMs for predicting typicality scores. Our experiments, using BERT (Devlin et al., 2018), show the importance of using the right type of CLM probes, as our best BERT-based typicality prediction methods substantially improve over previous works. Second, our results highlight the importance of polysemy in this task: our best results are obtained when using a disambiguation mechanism. Finally, additional experiments reveal that Information Contentbased WordNet (Miller, 1995), also endowed with disambiguation, match the performance of the best BERT-based method, and in fact capture complementary information, which can be combined with BERT to achieve enhanced typicality predictions.


Joint Anaphoricity Detection and Coreference Resolution with Constrained Latent Structures

AAAI Conferences

This paper introduces a new structured model for learning anaphoricity detection and coreference resolution in a joint fashion. Specifically,we use a latent tree to represent the full coreference and anaphoric structure of a document at a global level, and we jointly learn the parameters of the two models using a version of the structured perceptron algorithm. Our joint structured model is further refined by the use of pairwise constraints which help the model to capture accurately certain patterns of coreference. Our experiments on the CoNLL-2012 English datasets show large improvements in both coreference resolution and anaphoricity detection, compared to various competing architectures. Our best coreference system obtains a CoNLL score of 81.97 on gold mentions, which is to date the best score reported on this setting.