Deng, Zhenyun
Counterfactual Samples Constructing and Training for Commonsense Statements Estimation
Liu, Chong, Feng, Zaiwen, Liu, Lin, Deng, Zhenyun, Li, Jiuyong, Zhai, Ruifang, Cheng, Debo, Qin, Li
Plausibility Estimation (PE) plays a crucial role for enabling language models to objectively comprehend the real world. While large language models (LLMs) demonstrate remarkable capabilities in PE tasks but sometimes produce trivial commonsense errors due to the complexity of commonsense knowledge. They lack two key traits of an ideal PE model: a) Language-explainable: relying on critical word segments for decisions, and b) Commonsense-sensitive: detecting subtle linguistic variations in commonsense. To address these issues, we propose a novel model-agnostic method, referred to as Commonsense Counterfactual Samples Generating (CCSG). By training PE models with CCSG, we encourage them to focus on critical words, thereby enhancing both their language-explainable and commonsense-sensitive capabilities. Specifically, CCSG generates counterfactual samples by strategically replacing key words and introducing low-level dropout within sentences. These counterfactual samples are then incorporated into a sentence-level contrastive training framework to further enhance the model's learning process. Experimental results across nine diverse datasets demonstrate the effectiveness of CCSG in addressing commonsense reasoning challenges, with our CCSG method showing 3.07% improvement against the SOTA methods.
The Automated Verification of Textual Claims (AVeriTeC) Shared Task
Schlichtkrull, Michael, Chen, Yulong, Whitehouse, Chenxi, Deng, Zhenyun, Akhtar, Mubashara, Aly, Rami, Guo, Zhijiang, Christodoulopoulos, Christos, Cocarascu, Oana, Mittal, Arpit, Thorne, James, Vlachos, Andreas
The Automated Verification of Textual Claims (AVeriTeC) shared task asks participants to retrieve evidence and predict veracity for real-world claims checked by fact-checkers. Evidence can be found either via a search engine, or via a knowledge store provided by the organisers. Submissions are evaluated using AVeriTeC score, which considers a claim to be accurately verified if and only if both the verdict is correct and retrieved evidence is considered to meet a certain quality threshold. The shared task received 21 submissions, 18 of which surpassed our baseline. The winning team was TUDA_MAI with an AVeriTeC score of 63%. In this paper we describe the shared task, present the full results, and highlight key takeaways from the shared task.
Document-level Claim Extraction and Decontextualisation for Fact-Checking
Deng, Zhenyun, Schlichtkrull, Michael, Vlachos, Andreas
Selecting which claims to check is a time-consuming task for human fact-checkers, especially from documents consisting of multiple sentences and containing multiple claims. However, existing claim extraction approaches focus more on identifying and extracting claims from individual sentences, e.g., identifying whether a sentence contains a claim or the exact boundaries of the claim within a sentence. In this paper, we propose a method for document-level claim extraction for fact-checking, which aims to extract check-worthy claims from documents and decontextualise them so that they can be understood out of context. Specifically, we first recast claim extraction as extractive summarization in order to identify central sentences from documents, then rewrite them to include necessary context from the originating document through sentence decontextualisation. Evaluation with both automatic metrics and a fact-checking professional shows that our method is able to extract check-worthy claims from documents more accurately than previous work, while also improving evidence retrieval.
Enhancing Logical Reasoning of Large Language Models through Logic-Driven Data Augmentation
Bao, Qiming, Peng, Alex Yuxuan, Deng, Zhenyun, Zhong, Wanjun, Gendron, Gael, Pistotti, Timothy, Tan, Neset, Young, Nathan, Chen, Yang, Zhu, Yonghua, Denny, Paul, Witbrock, Michael, Liu, Jiamou
Combining large language models with logical reasoning enhance their capacity to address problems in a robust and reliable manner. Nevertheless, the intricate nature of logical reasoning poses challenges to gathering reliable data from web for building comprehensive training datasets, subsequently affecting the performance on downstream tasks. To address this, we introduce a novel logic-driven data augmentation approach, AMR-LDA. AMR-LDA converts the original text into an Abstract Meaning Representation (AMR) graph, a structured semantic representation that encapsulates the logic structure of the sentence, upon which operations are performed to generate logically modified AMR graphs. The modified AMR graphs are subsequently converted back into texts to create augmented data. Notably, our methodology is architecture-agnostic and enhances generative large language models, such as GPT-3.5 and GPT-4, through prompt augmentation, and fine-tuning discriminative large language models through contrastive learning with logic-driven data augmentation. Empirical evidence underscores the efficacy of our proposed method with improvement in performance across seven downstream tasks, such as logical reasoning reading comprehension, textual entailment, and natural language inference. Furthermore, our method ranked first on the ReClor leaderboard \url{https://eval.ai/web/challenges/challenge-page/503/leaderboard/1347}. The source code and data are publicly available \url{https://github.com/Strong-AI-Lab/Logical-Equivalence-driven-AMR-Data-Augmentation-for-Representation-Learning}.