Goto

Collaborating Authors

 Deng, Rui


GeoAggregator: An Efficient Transformer Model for Geo-Spatial Tabular Data

arXiv.org Artificial Intelligence

Modeling geospatial tabular data with deep learning has become a promising alternative to traditional statistical and machine learning approaches. However, existing deep learning models often face challenges related to scalability and flexibility as datasets grow. To this end, this paper introduces GeoAggregator, an efficient and lightweight algorithm based on transformer architecture designed specifically for geospatial tabular data modeling. GeoAggregators explicitly account for spatial autocorrelation and spatial heterogeneity through Gaussian-biased local attention and global positional awareness. Additionally, we introduce a new attention mechanism that uses the Cartesian product to manage the size of the model while maintaining strong expressive power. We benchmark GeoAggregator against spatial statistical models, XGBoost, and several state-of-the-art geospatial deep learning methods using both synthetic and empirical geospatial datasets. The results demonstrate that GeoAggregators achieve the best or second-best performance compared to their competitors on nearly all datasets. GeoAggregator's efficiency is underscored by its reduced model size, making it both scalable and lightweight. Moreover, ablation experiments offer insights into the effectiveness of the Gaussian bias and Cartesian attention mechanism, providing recommendations for further optimizing the GeoAggregator's performance.


Communication-Free Distributed GNN Training with Vertex Cut

arXiv.org Artificial Intelligence

Training Graph Neural Networks (GNNs) on real-world graphs consisting of billions of nodes and edges is quite challenging, primarily due to the substantial memory needed to store the graph and its intermediate node and edge features, and there is a pressing need to speed up the training process. A common approach to achieve speed up is to divide the graph into many smaller subgraphs, which are then distributed across multiple GPUs in one or more machines and processed in parallel. However, existing distributed methods require frequent and substantial cross-GPU communication, leading to significant time overhead and progressively diminishing scalability. Here, we introduce CoFree-GNN, a novel distributed GNN training framework that significantly speeds up the training process by implementing communication-free training. The framework utilizes a Vertex Cut partitioning, i.e., rather than partitioning the graph by cutting the edges between partitions, the Vertex Cut partitions the edges and duplicates the node information to preserve the graph structure. Furthermore, the framework maintains high model accuracy by incorporating a reweighting mechanism to handle a distorted graph distribution that arises from the duplicated nodes. We also propose a modified DropEdge technique to further speed up the training process. Using an extensive set of experiments on real-world networks, we demonstrate that CoFree-GNN speeds up the GNN training process by up to 10 times over the existing state-of-the-art GNN training approaches.


The System Description of dun_oscar team for The ICPR MSR Challenge

arXiv.org Artificial Intelligence

This paper introduces the system submitted by dun_oscar team for the ICPR MSR Challenge. Three subsystems for task1-task3 are descripted respectively. In task1, we develop a visual system which includes a OCR model, a text tracker, and a NLP classifier for distinguishing subtitles and non-subtitles. In task2, we employ an ASR system which includes an AM with 18 layers and a 4-gram LM. Semi-supervised learning on unlabeled data is also vital. In task3, we employ the ASR system to improve the visual system, some false subtitles can be corrected by a fusion module.