Deng, Liangjian
A General Adaptive Dual-level Weighting Mechanism for Remote Sensing Pansharpening
Huang, Jie, Chen, Haorui, Ren, Jiaxuan, Peng, Siran, Deng, Liangjian
Currently, deep learning-based methods for remote sensing pansharpening have advanced rapidly. However, many existing methods struggle to fully leverage feature heterogeneity and redundancy, thereby limiting their effectiveness. We use the covariance matrix to model the feature heterogeneity and redundancy and propose Correlation-Aware Covariance Weighting (CACW) to adjust them. CACW captures these correlations through the covariance matrix, which is then processed by a nonlinear function to generate weights for adjustment. Building upon CACW, we introduce a general adaptive dual-level weighting mechanism (ADWM) to address these challenges from two key perspectives, enhancing a wide range of existing deep-learning methods. First, Intra-Feature Weighting (IFW) evaluates correlations among channels within each feature to reduce redundancy and enhance unique information. Second, Cross-Feature Weighting (CFW) adjusts contributions across layers based on inter-layer correlations, refining the final output. Extensive experiments demonstrate the superior performance of ADWM compared to recent state-of-the-art (SOTA) methods. Furthermore, we validate the effectiveness of our approach through generality experiments, redundancy visualization, comparison experiments, key variables and complexity analysis, and ablation studies. Our code is available at https://github.com/Jie-1203/ADWM.
Wavelet-Assisted Multi-Frequency Attention Network for Pansharpening
Huang, Jie, Huang, Rui, Xu, Jinghao, Pen, Siran, Duan, Yule, Deng, Liangjian
Pansharpening aims to combine a high-resolution panchromatic (PAN) image with a low-resolution multispectral (LRMS) image to produce a high-resolution multispectral (HRMS) image. Although pansharpening in the frequency domain offers clear advantages, most existing methods either continue to operate solely in the spatial domain or fail to fully exploit the benefits of the frequency domain. To address this issue, we innovatively propose Multi-Frequency Fusion Attention (MFFA), which leverages wavelet transforms to cleanly separate frequencies and enable lossless reconstruction across different frequency domains. Then, we generate Frequency-Query, Spatial-Key, and Fusion-Value based on the physical meanings represented by different features, which enables a more effective capture of specific information in the frequency domain. Additionally, we focus on the preservation of frequency features across different operations. On a broader level, our network employs a wavelet pyramid to progressively fuse information across multiple scales. Compared to previous frequency domain approaches, our network better prevents confusion and loss of different frequency features during the fusion process. Quantitative and qualitative experiments on multiple datasets demonstrate that our method outperforms existing approaches and shows significant generalization capabilities for real-world scenarios.
Tensor Decomposition Based Attention Module for Spiking Neural Networks
Deng, Haoyu, Zhu, Ruijie, Qiu, Xuerui, Duan, Yule, Zhang, Malu, Deng, Liangjian
The attention mechanism has been proven to be an effective way to improve spiking neural network (SNN). However, based on the fact that the current SNN input data flow is split into tensors to process on GPUs, none of the previous works consider the properties of tensors to implement an attention module. This inspires us to rethink current SNN from the perspective of tensor-relevant theories. Using tensor decomposition, we design the \textit{projected full attention} (PFA) module, which demonstrates excellent results with linearly growing parameters. Specifically, PFA is composed by the \textit{linear projection of spike tensor} (LPST) module and \textit{attention map composing} (AMC) module. In LPST, we start by compressing the original spike tensor into three projected tensors using a single property-preserving strategy with learnable parameters for each dimension. Then, in AMC, we exploit the inverse procedure of the tensor decomposition process to combine the three tensors into the attention map using a so-called connecting factor. To validate the effectiveness of the proposed PFA module, we integrate it into the widely used VGG and ResNet architectures for classification tasks. Our method achieves state-of-the-art performance on both static and dynamic benchmark datasets, surpassing the existing SNN models with Transformer-based and CNN-based backbones.