Deng, Liang-Jian
TCJA-SNN: Temporal-Channel Joint Attention for Spiking Neural Networks
Zhu, Rui-Jie, Zhao, Qihang, Zhang, Tianjing, Deng, Haoyu, Duan, Yule, Zhang, Malu, Deng, Liang-Jian
Spiking Neural Networks (SNNs) are attracting widespread interest due to their biological plausibility, energy efficiency, and powerful spatio-temporal information representation ability. Given the critical role of attention mechanisms in enhancing neural network performance, the integration of SNNs and attention mechanisms exhibits potential to deliver energy-efficient and high-performance computing paradigms. We present a novel Temporal-Channel Joint Attention mechanism for SNNs, referred to as TCJA-SNN. The proposed TCJA-SNN framework can effectively assess the significance of spike sequence from both spatial and temporal dimensions. More specifically, our essential technical contribution lies on: 1) We employ the squeeze operation to compress the spike stream into an average matrix. Then, we leverage two local attention mechanisms based on efficient 1D convolutions to facilitate comprehensive feature extraction at the temporal and channel levels independently. 2) We introduce the Cross Convolutional Fusion (CCF) layer as a novel approach to model the inter-dependencies between the temporal and channel scopes. This layer breaks the independence of these two dimensions and enables the interaction between features. Experimental results demonstrate that the proposed TCJA-SNN outperforms SOTA by up to 15.7% accuracy on standard static and neuromorphic datasets, including Fashion-MNIST, CIFAR10-DVS, N-Caltech 101, and DVS128 Gesture. Furthermore, we apply the TCJA-SNN framework to image generation tasks by leveraging a variation autoencoder. To the best of our knowledge, this study is the first instance where the SNN-attention mechanism has been employed for image classification and generation tasks. Notably, our approach has achieved SOTA performance in both domains, establishing a significant advancement in the field. Codes are available at https://github.com/ridgerchu/TCJA.
APLA: Additional Perturbation for Latent Noise with Adversarial Training Enables Consistency
Yao, Yupu, Deng, Shangqi, Cao, Zihan, Zhang, Harry, Deng, Liang-Jian
Diffusion models have exhibited promising progress in video generation. However, they often struggle to retain consistent details within local regions across frames. One underlying cause is that traditional diffusion models approximate Gaussian noise distribution by utilizing predictive noise, without fully accounting for the impact of inherent information within the input itself. Additionally, these models emphasize the distinction between predictions and references, neglecting information intrinsic to the videos. To address this limitation, inspired by the self-attention mechanism, we propose a novel text-to-video (T2V) generation network structure based on diffusion models, dubbed Additional Perturbation for Latent noise with Adversarial training (APLA). Our approach only necessitates a single video as input and builds upon pre-trained stable diffusion networks. Notably, we introduce an additional compact network, known as the Video Generation Transformer (VGT). This auxiliary component is designed to extract perturbations from the inherent information contained within the input, thereby refining inconsistent pixels during temporal predictions. We leverage a hybrid architecture of transformers and convolutions to compensate for temporal intricacies, enhancing consistency between different frames within the video. Experiments demonstrate a noticeable improvement in the consistency of the generated videos both qualitatively and quantitatively.
DDRF: Denoising Diffusion Model for Remote Sensing Image Fusion
Cao, ZiHan, Cao, ShiQi, Wu, Xiao, Hou, JunMing, Ran, Ran, Deng, Liang-Jian
Denosing diffusion model, as a generative model, has received a lot of attention in the field of image generation recently, thanks to its powerful generation capability. However, diffusion models have not yet received sufficient research in the field of image fusion. In this article, we introduce diffusion model to the image fusion field, treating the image fusion task as image-to-image translation and designing two different conditional injection modulation modules (i.e., style transfer modulation and wavelet modulation) to inject coarse-grained style information and fine-grained high-frequency and low-frequency information into the diffusion UNet, thereby generating fused images. In addition, we also discussed the residual learning and the selection of training objectives of the diffusion model in the image fusion task. Extensive experimental results based on quantitative and qualitative assessments compared with benchmarks demonstrates state-of-the-art results and good generalization performance in image fusion tasks. Finally, it is hoped that our method can inspire other works and gain insight into this field to better apply the diffusion model to image fusion tasks. Code shall be released for better reproducibility.