Goto

Collaborating Authors

 Deng, Keqi


Transducer-Llama: Integrating LLMs into Streamable Transducer-based Speech Recognition

arXiv.org Artificial Intelligence

While large language models (LLMs) have been applied to automatic speech recognition (ASR), the task of making the model streamable remains a challenge. This paper proposes a novel model architecture, Transducer-Llama, that integrates LLMs into a Factorized Transducer (FT) model, naturally enabling streaming capabilities. Furthermore, given that the large vocabulary of LLMs can cause data sparsity issue and increased training costs for spoken language systems, this paper introduces an efficient vocabulary adaptation technique to align LLMs with speech system vocabularies. The results show that directly optimizing the FT model with a strong pre-trained LLM-based predictor using the RNN-T loss yields some but limited improvements over a smaller pre-trained LM predictor. Therefore, this paper proposes a weak-to-strong LM swap strategy, using a weak LM predictor during RNN-T loss training and then replacing it with a strong LLM. After LM replacement, the minimum word error rate (MWER) loss is employed to finetune the integration of the LLM predictor with the Transducer-Llama model. Experiments on the LibriSpeech and large-scale multi-lingual LibriSpeech corpora show that the proposed streaming Transducer-Llama approach gave a 17% relative WER reduction (WERR) over a strong FT baseline and a 32% WERR over an RNN-T baseline.


CoT-ST: Enhancing LLM-based Speech Translation with Multimodal Chain-of-Thought

arXiv.org Artificial Intelligence

Speech Language Models (SLMs) have demonstrated impressive performance on speech translation tasks. However, existing research primarily focuses on direct instruction fine-tuning and often overlooks the inherent reasoning capabilities of SLMs. In this paper, we introduce a three-stage training framework designed to activate the chain-of-thought (CoT) capabilities of SLMs. We propose CoT-ST, a speech translation model that utilizes multimodal CoT to decompose speech translation into sequential steps of speech recognition and translation. We validated the effectiveness of our method on two datasets: the CoVoST-2 dataset and MuST-C dataset. The experimental results demonstrate that CoT-ST outperforms previous state-of-the-art methods, achieving higher BLEU scores (CoVoST-2 en-ja: 30.5->30.8, en-zh: 45.2->47.7, MuST-C en-zh: 19.6->21.2). This work is open sourced at https://github.com/X-LANCE/SLAM-LLM/tree/main/examples/st_covost2 .


Label-Synchronous Neural Transducer for E2E Simultaneous Speech Translation

arXiv.org Artificial Intelligence

While the neural transducer is popular for online speech recognition, simultaneous speech translation (SST) requires both streaming and re-ordering capabilities. This paper presents the LS-Transducer-SST, a label-synchronous neural transducer for SST, which naturally possesses these two properties. The LS-Transducer-SST dynamically decides when to emit translation tokens based on an Auto-regressive Integrate-and-Fire (AIF) mechanism. A latency-controllable AIF is also proposed, which can control the quality-latency trade-off either only during decoding, or it can be used in both decoding and training. The LS-Transducer-SST can naturally utilise monolingual text-only data via its prediction network which helps alleviate the key issue of data sparsity for E2E SST. During decoding, a chunk-based incremental joint decoding technique is designed to refine and expand the search space. Experiments on the Fisher-CallHome Spanish (Es-En) and MuST-C En-De data show that the LS-Transducer-SST gives a better quality-latency trade-off than existing popular methods. For example, the LS-Transducer-SST gives a 3.1/2.9 point BLEU increase (Es-En/En-De) relative to CAAT at a similar latency and a 1.4 s reduction in average lagging latency with similar BLEU scores relative to Wait-k.


Decoupled Structure for Improved Adaptability of End-to-End Models

arXiv.org Artificial Intelligence

Although end-to-end (E2E) trainable automatic speech recognition (ASR) has shown great success by jointly learning acoustic and linguistic information, it still suffers from the effect of domain shifts, thus limiting potential applications. The E2E ASR model implicitly learns an internal language model (LM) which characterises the training distribution of the source domain, and the E2E trainable nature makes the internal LM difficult to adapt to the target domain with text-only data To solve this problem, this paper proposes decoupled structures for attention-based encoder-decoder (Decoupled-AED) and neural transducer (Decoupled-Transducer) models, which can achieve flexible domain adaptation in both offline and online scenarios while maintaining robust intra-domain performance. To this end, the acoustic and linguistic parts of the E2E model decoder (or prediction network) are decoupled, making the linguistic component (i.e. internal LM) replaceable. When encountering a domain shift, the internal LM can be directly replaced during inference by a target-domain LM, without re-training or using domain-specific paired speech-text data. Experiments for E2E ASR models trained on the LibriSpeech-100h corpus showed that the proposed decoupled structure gave 15.1% and 17.2% relative word error rate reductions on the TED-LIUM 2 and AESRC2020 corpora while still maintaining performance on intra-domain data.