Deng, Cheng
PLM: Efficient Peripheral Language Models Hardware-Co-Designed for Ubiquitous Computing
Deng, Cheng, Sun, Luoyang, Jiang, Jiwen, Zeng, Yongcheng, Wu, Xinjian, Zhao, Wenxin, Xiao, Qingfa, Wang, Jiachuan, Li, Haoyang, Chen, Lei, Ni, Lionel M., Zhang, Haifeng, Wang, Jun
While scaling laws have been continuously validated in large language models (LLMs) with increasing model parameters, the inherent tension between the inference demands of LLMs and the limited resources of edge devices poses a critical challenge to the development of edge intelligence. Recently, numerous small language models have emerged, aiming to distill the capabilities of LLMs into smaller footprints. However, these models often retain the fundamental architectural principles of their larger counterparts, still imposing considerable strain on the storage and bandwidth capacities of edge devices. In this paper, we introduce the PLM, a Peripheral Language Model, developed through a co-design process that jointly optimizes model architecture and edge system constraints. The PLM utilizes a Multi-head Latent Attention mechanism and employs the squared ReLU activation function to encourage sparsity, thereby reducing peak memory footprint during inference. During training, we collect and reorganize open-source datasets, implement a multi-phase training strategy, and empirically investigate the Warmup-Stable-Decay-Constant (WSDC) learning rate scheduler. Additionally, we incorporate Reinforcement Learning from Human Feedback (RLHF) by adopting the ARIES preference learning approach. Following a two-phase SFT process, this method yields performance gains of 2% in general tasks, 9% in the GSM8K task, and 11% in coding tasks. In addition to its novel architecture, evaluation results demonstrate that PLM outperforms existing small language models trained on publicly available data while maintaining the lowest number of activated parameters. Furthermore, deployment across various edge devices, including consumer-grade GPUs, mobile phones, and Raspberry Pis, validates PLM's suitability for peripheral applications. The PLM series models are publicly available at https://github.com/plm-team/PLM.
Activation-aware Probe-Query: Effective Key-Value Retrieval for Long-Context LLMs Inference
Xiao, Qingfa, Wang, Jiachuan, Li, Haoyang, Deng, Cheng, Tang, Jiaqi, Li, Shuangyin, Zhang, Yongqi, Wang, Jun, Chen, Lei
Recent advances in large language models (LLMs) have showcased exceptional performance in long-context tasks, while facing significant inference efficiency challenges with limited GPU memory. Existing solutions first proposed the sliding-window approach to accumulate a set of historical \textbf{key-value} (KV) pairs for reuse, then further improvements selectively retain its subsets at each step. However, due to the sparse attention distribution across a long context, it is hard to identify and recall relevant KV pairs, as the attention is distracted by massive candidate pairs. Additionally, we found it promising to select representative tokens as probe-Query in each sliding window to effectively represent the entire context, which is an approach overlooked by existing methods. Thus, we propose \textbf{ActQKV}, a training-free, \textbf{Act}ivation-aware approach that dynamically determines probe-\textbf{Q}uery and leverages it to retrieve the relevant \textbf{KV} pairs for inference. Specifically, ActQKV monitors a token-level indicator, Activation Bias, within each context window, enabling the proper construction of probe-Query for retrieval at pre-filling stage. To accurately recall the relevant KV pairs and minimize the irrelevant ones, we design a dynamic KV cut-off mechanism guided by information density across layers at the decoding stage. Experiments on the Long-Bench and $\infty$ Benchmarks demonstrate its state-of-the-art performance with competitive inference quality and resource efficiency.
KaLM: Knowledge-aligned Autoregressive Language Modeling via Dual-view Knowledge Graph Contrastive Learning
Yu, Peng, Deng, Cheng, Dai, Beiya, Wang, Xinbing, Wen, Ying
Autoregressive large language models (LLMs) pre-trained by next token prediction are inherently proficient in generative tasks. However, their performance on knowledge-driven tasks such as factual knowledge querying remains unsatisfactory. Knowledge graphs (KGs), as high-quality structured knowledge bases, can provide reliable knowledge for LLMs, potentially compensating for their knowledge deficiencies. Aligning LLMs with explicit, structured knowledge from KGs has been a challenge; previous attempts either failed to effectively align knowledge representations or compromised the generative capabilities of LLMs, leading to less-than-optimal outcomes. This paper proposes \textbf{KaLM}, a \textit{Knowledge-aligned Language Modeling} approach, which fine-tunes autoregressive LLMs to align with KG knowledge via the joint objective of explicit knowledge alignment and implicit knowledge alignment. The explicit knowledge alignment objective aims to directly optimize the knowledge representation of LLMs through dual-view knowledge graph contrastive learning. The implicit knowledge alignment objective focuses on incorporating textual patterns of knowledge into LLMs through triple completion language modeling. Notably, our method achieves a significant performance boost in evaluations of knowledge-driven tasks, specifically embedding-based knowledge graph completion and generation-based knowledge graph question answering.
Self-Supervised Graph Embedding Clustering
Li, Fangfang, Gao, Quanxue, Deng, Cheng, Xia, Wei
The K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks. However, it combines the K-means clustering and dimensionality reduction processes for optimization, leading to limitations in the clustering effect due to the introduced hyperparameters and the initialization of clustering centers. Moreover, maintaining class balance during clustering remains challenging. To overcome these issues, we propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework. Specifically, we establish a connection between K-means and the manifold structure, allowing us to perform K-means without explicitly defining centroids. Additionally, we use this centroid-free K-means to generate labels in low-dimensional space and subsequently utilize the label information to determine the similarity between samples. This approach ensures consistency between the manifold structure and the labels. Our model effectively achieves one-step clustering without the need for redundant balancing hyperparameters. Notably, we have discovered that maximizing the $\ell_{2,1}$-norm naturally maintains class balance during clustering, a result that we have theoretically proven. Finally, experiments on multiple datasets demonstrate that the clustering results of Our-LPP and Our-MFA exhibit excellent and reliable performance.
Good Idea or Not, Representation of LLM Could Tell
Xu, Yi, Xue, Bo, Sheng, Shuqian, Deng, Cheng, Ding, Jiaxin, Shen, Zanwei, Fu, Luoyi, Wang, Xinbing, Zhou, Chenghu
In the ever-expanding landscape of academic research, the proliferation of ideas presents a significant challenge for researchers: discerning valuable ideas from the less impactful ones. The ability to efficiently evaluate the potential of these ideas is crucial for the advancement of science and paper review. In this work, we focus on idea assessment, which aims to leverage the knowledge of large language models to assess the merit of scientific ideas. First, we investigate existing text evaluation research and define the problem of quantitative evaluation of ideas. Second, we curate and release a benchmark dataset from nearly four thousand manuscript papers with full texts, meticulously designed to train and evaluate the performance of different approaches to this task. Third, we establish a framework for quantifying the value of ideas by employing representations in a specific layer of large language models. Experimental results show that the scores predicted by our method are relatively consistent with those of humans. Our findings suggest that the representations of large language models hold more potential in quantifying the value of ideas than their generative outputs, demonstrating a promising avenue for automating the idea assessment process.
NovelQA: Benchmarking Question Answering on Documents Exceeding 200K Tokens
Wang, Cunxiang, Ning, Ruoxi, Pan, Boqi, Wu, Tonghui, Guo, Qipeng, Deng, Cheng, Bao, Guangsheng, Hu, Xiangkun, Zhang, Zheng, Wang, Qian, Zhang, Yue
The rapid advancement of Large Language Models (LLMs) has introduced a new frontier in natural language processing, particularly in understanding and processing long-context information. However, the evaluation of these models' long-context abilities remains a challenge due to the limitations of current benchmarks. To address this gap, we introduce NovelQA, a benchmark specifically designed to test the capabilities of LLMs with extended texts. Constructed from English novels, NovelQA offers a unique blend of complexity, length, and narrative coherence, making it an ideal tool for assessing deep textual understanding in LLMs. This paper presents the design and construction of NovelQA, highlighting its manual annotation, and diverse question types. Our evaluation of Long-context LLMs on NovelQA reveals significant insights into the models' performance, particularly emphasizing the challenges they face with multi-hop reasoning, detail-oriented questions, and extremely long input with an average length more than 200,000 tokens. The results underscore the necessity for further advancements in LLMs to improve their long-context comprehension.
DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning
Guo, Siyuan, Deng, Cheng, Wen, Ying, Chen, Hechang, Chang, Yi, Wang, Jun
In this work, we investigate the potential of large language models (LLMs) based agents to automate data science tasks, with the goal of comprehending task requirements, then building and training the best-fit machine learning models. Despite their widespread success, existing LLM agents are hindered by generating unreasonable experiment plans within this scenario. To this end, we present DS-Agent, a novel automatic framework that harnesses LLM agent and case-based reasoning (CBR). In the development stage, DS-Agent follows the CBR framework to structure an automatic iteration pipeline, which can flexibly capitalize on the expert knowledge from Kaggle, and facilitate consistent performance improvement through the feedback mechanism. Moreover, DS-Agent implements a low-resource deployment stage with a simplified CBR paradigm to adapt past successful solutions from the development stage for direct code generation, significantly reducing the demand on foundational capabilities of LLMs. Empirically, DS-Agent with GPT-4 achieves 100\% success rate in the development stage, while attaining 36\% improvement on average one pass rate across alternative LLMs in the deployment stage. In both stages, DS-Agent achieves the best rank in performance, costing \$1.60 and \$0.13 per run with GPT-4, respectively. Our data and code are open-sourced at https://github.com/guosyjlu/DS-Agent.
Multimodal Fusion on Low-quality Data: A Comprehensive Survey
Zhang, Qingyang, Wei, Yake, Han, Zongbo, Fu, Huazhu, Peng, Xi, Deng, Cheng, Hu, Qinghua, Xu, Cai, Wen, Jie, Hu, Di, Zhang, Changqing
Multimodal fusion focuses on integrating information from multiple modalities with the goal of more accurate prediction, which has achieved remarkable progress in a wide range of scenarios, including autonomous driving and medical diagnosis. However, the reliability of multimodal fusion remains largely unexplored especially under low-quality data settings. This paper surveys the common challenges and recent advances of multimodal fusion in the wild and presents them in a comprehensive taxonomy. From a data-centric view, we identify four main challenges that are faced by multimodal fusion on low-quality data, namely (1) noisy multimodal data that are contaminated with heterogeneous noises, (2) incomplete multimodal data that some modalities are missing, (3) imbalanced multimodal data that the qualities or properties of different modalities are significantly different and (4) quality-varying multimodal data that the quality of each modality dynamically changes with respect to different samples. This new taxonomy will enable researchers to understand the state of the field and identify several potential directions. We also provide discussion for the open problems in this field together with interesting future research directions.
AceMap: Knowledge Discovery through Academic Graph
Wang, Xinbing, Fu, Luoyi, Gan, Xiaoying, Wen, Ying, Zheng, Guanjie, Ding, Jiaxin, Xiang, Liyao, Ye, Nanyang, Jin, Meng, Liang, Shiyu, Lu, Bin, Wang, Haiwen, Xu, Yi, Deng, Cheng, Zhang, Shao, Kang, Huquan, Wang, Xingli, Li, Qi, Guo, Zhixin, Qi, Jiexing, Liu, Pan, Ren, Yuyang, Wu, Lyuwen, Yang, Jungang, Zhou, Jianping, Zhou, Chenghu
The exponential growth of scientific literature requires effective management and extraction of valuable insights. While existing scientific search engines excel at delivering search results based on relational databases, they often neglect the analysis of collaborations between scientific entities and the evolution of ideas, as well as the in-depth analysis of content within scientific publications. The representation of heterogeneous graphs and the effective measurement, analysis, and mining of such graphs pose significant challenges. To address these challenges, we present AceMap, an academic system designed for knowledge discovery through academic graph. We present advanced database construction techniques to build the comprehensive AceMap database with large-scale academic entities that contain rich visual, textual, and numerical information. AceMap also employs innovative visualization, quantification, and analysis methods to explore associations and logical relationships among academic entities. AceMap introduces large-scale academic network visualization techniques centered on nebular graphs, providing a comprehensive view of academic networks from multiple perspectives. In addition, AceMap proposes a unified metric based on structural entropy to quantitatively measure the knowledge content of different academic entities. Moreover, AceMap provides advanced analysis capabilities, including tracing the evolution of academic ideas through citation relationships and concept co-occurrence, and generating concise summaries informed by this evolutionary process. In addition, AceMap uses machine reading methods to generate potential new ideas at the intersection of different fields. Exploring the integration of large language models and knowledge graphs is a promising direction for future research in idea evolution. Please visit \url{https://www.acemap.info} for further exploration.
Fuzzy K-Means Clustering without Cluster Centroids
Lu, Han, Li, Fangfang, Gao, Quanxue, Deng, Cheng, Ding, Chris, Wang, Qianqian
Fuzzy K-Means clustering is a critical technique in unsupervised data analysis. However, the performance of popular Fuzzy K-Means algorithms is sensitive to the selection of initial cluster centroids and is also affected by noise when updating mean cluster centroids. To address these challenges, this paper proposes a novel Fuzzy K-Means clustering algorithm that entirely eliminates the reliance on cluster centroids, obtaining membership matrices solely through distance matrix computation. This innovation enhances flexibility in distance measurement between sample points, thus improving the algorithm's performance and robustness. The paper also establishes theoretical connections between the proposed model and popular Fuzzy K-Means clustering techniques. Experimental results on several real datasets demonstrate the effectiveness of the algorithm.