Plotting

 Deng, Chao


InjectTST: A Transformer Method of Injecting Global Information into Independent Channels for Long Time Series Forecasting

arXiv.org Artificial Intelligence

Transformer has become one of the most popular architectures for multivariate time series (MTS) forecasting. Recent Transformer-based MTS models generally prefer channel-independent structures with the observation that channel independence can alleviate noise and distribution drift issues, leading to more robustness. Nevertheless, it is essential to note that channel dependency remains an inherent characteristic of MTS, carrying valuable information. Designing a model that incorporates merits of both channel-independent and channel-mixing structures is a key to further improvement of MTS forecasting, which poses a challenging conundrum. To address the problem, an injection method for global information into channel-independent Transformer, InjectTST, is proposed in this paper. Instead of designing a channel-mixing model directly, we retain the channel-independent backbone and gradually inject global information into individual channels in a selective way. A channel identifier, a global mixing module and a self-contextual attention module are devised in InjectTST. The channel identifier can help Transformer distinguish channels for better representation. The global mixing module produces cross-channel global information. Through the self-contextual attention module, the independent channels can selectively concentrate on useful global information without robustness degradation, and channel mixing is achieved implicitly. Experiments indicate that InjectTST can achieve stable improvement compared with state-of-the-art models.


Depth Map Denoising Network and Lightweight Fusion Network for Enhanced 3D Face Recognition

arXiv.org Artificial Intelligence

With the increasing availability of consumer depth sensors, 3D face recognition (FR) has attracted more and more attention. However, the data acquired by these sensors are often coarse and noisy, making them impractical to use directly. In this paper, we introduce an innovative Depth map denoising network (DMDNet) based on the Denoising Implicit Image Function (DIIF) to reduce noise and enhance the quality of facial depth images for low-quality 3D FR. After generating clean depth faces using DMDNet, we further design a powerful recognition network called Lightweight Depth and Normal Fusion network (LDNFNet), which incorporates a multi-branch fusion block to learn unique and complementary features between different modalities such as depth and normal images. Comprehensive experiments conducted on four distinct low-quality databases demonstrate the effectiveness and robustness of our proposed methods. Furthermore, when combining DMDNet and LDNFNet, we achieve state-of-the-art results on the Lock3DFace database.


Cascaded Multi-task Adaptive Learning Based on Neural Architecture Search

arXiv.org Artificial Intelligence

Cascading multiple pre-trained models is an effective way to compose an end-to-end system. However, fine-tuning the full cascaded model is parameter and memory inefficient and our observations reveal that only applying adapter modules on cascaded model can not achieve considerable performance as fine-tuning. We propose an automatic and effective adaptive learning method to optimize end-to-end cascaded multi-task models based on Neural Architecture Search (NAS) framework. The candidate adaptive operations on each specific module consist of frozen, inserting an adapter and fine-tuning. We further add a penalty item on the loss to limit the learned structure which takes the amount of trainable parameters into account. The penalty item successfully restrict the searched architecture and the proposed approach is able to search similar tuning scheme with hand-craft, compressing the optimizing parameters to 8.7% corresponding to full fine-tuning on SLURP with an even better performance.


MPPN: Multi-Resolution Periodic Pattern Network For Long-Term Time Series Forecasting

arXiv.org Artificial Intelligence

Long-term time series forecasting plays an important role in various real-world scenarios. Recent deep learning methods for long-term series forecasting tend to capture the intricate patterns of time series by decomposition-based or sampling-based methods. However, most of the extracted patterns may include unpredictable noise and lack good interpretability. Moreover, the multivariate series forecasting methods usually ignore the individual characteristics of each variate, which may affecting the prediction accuracy. To capture the intrinsic patterns of time series, we propose a novel deep learning network architecture, named Multi-resolution Periodic Pattern Network (MPPN), for long-term series forecasting. We first construct context-aware multi-resolution semantic units of time series and employ multi-periodic pattern mining to capture the key patterns of time series. Then, we propose a channel adaptive module to capture the perceptions of multivariate towards different patterns. In addition, we present an entropy-based method for evaluating the predictability of time series and providing an upper bound on the prediction accuracy before forecasting. Our experimental evaluation on nine real-world benchmarks demonstrated that MPPN significantly outperforms the state-of-the-art Transformer-based, decomposition-based and sampling-based methods for long-term series forecasting.


ESCL: Equivariant Self-Contrastive Learning for Sentence Representations

arXiv.org Artificial Intelligence

Previous contrastive learning methods for sentence representations often focus on insensitive transformations to produce positive pairs, but neglect the role of sensitive transformations that are harmful to semantic representations. Therefore, we propose an Equivariant Self-Contrastive Learning (ESCL) method to make full use of sensitive transformations, which encourages the learned representations to be sensitive to certain types of transformations with an additional equivariant learning task. Meanwhile, in order to improve practicability and generality, ESCL simplifies the implementations of traditional equivariant contrastive methods to share model parameters from the perspective of multi-task learning. We evaluate our ESCL on semantic textual similarity tasks. The proposed method achieves better results while using fewer learning parameters compared to previous methods.


Adaptive Hybrid Spatial-Temporal Graph Neural Network for Cellular Traffic Prediction

arXiv.org Artificial Intelligence

Cellular traffic prediction is an indispensable part for intelligent telecommunication networks. Nevertheless, due to the frequent user mobility and complex network scheduling mechanisms, cellular traffic often inherits complicated spatial-temporal patterns, making the prediction incredibly challenging. Although recent advanced algorithms such as graph-based prediction approaches have been proposed, they frequently model spatial dependencies based on static or dynamic graphs and neglect the coexisting multiple spatial correlations induced by traffic generation. Meanwhile, some works lack the consideration of the diverse cellular traffic patterns, result in suboptimal prediction results. In this paper, we propose a novel deep learning network architecture, Adaptive Hybrid Spatial-Temporal Graph Neural Network (AHSTGNN), to tackle the cellular traffic prediction problem. First, we apply adaptive hybrid graph learning to learn the compound spatial correlations among cell towers. Second, we implement a Temporal Convolution Module with multi-periodic temporal data input to capture the nonlinear temporal dependencies. In addition, we introduce an extra Spatial-Temporal Adaptive Module to conquer the heterogeneity lying in cell towers. Our experiments on two real-world cellular traffic datasets show AHSTGNN outperforms the state-of-the-art by a significant margin, illustrating the superior scalability of our method for spatial-temporal cellular traffic prediction.


Federated Learning over Coupled Graphs

arXiv.org Artificial Intelligence

Graphs are widely used to represent the relations among entities. When one owns the complete data, an entire graph can be easily built, therefore performing analysis on the graph is straightforward. However, in many scenarios, it is impractical to centralize the data due to data privacy concerns. An organization or party only keeps a part of the whole graph data, i.e., graph data is isolated from different parties. Recently, Federated Learning (FL) has been proposed to solve the data isolation issue, mainly for Euclidean data. It is still a challenge to apply FL on graph data because graphs contain topological information which is notorious for its non-IID nature and is hard to partition. In this work, we propose a novel FL framework for graph data, FedCog, to efficiently handle coupled graphs that are a kind of distributed graph data, but widely exist in a variety of real-world applications such as mobile carriers' communication networks and banks' transaction networks. We theoretically prove the correctness and security of FedCog. Experimental results demonstrate that our method FedCog significantly outperforms traditional FL methods on graphs. Remarkably, our FedCog improves the accuracy of node classification tasks by up to 14.7%.


Adaptive Multi-receptive Field Spatial-Temporal Graph Convolutional Network for Traffic Forecasting

arXiv.org Artificial Intelligence

Mobile network traffic forecasting is one of the key functions in daily network operation. A commercial mobile network is large, heterogeneous, complex and dynamic. These intrinsic features make mobile network traffic forecasting far from being solved even with recent advanced algorithms such as graph convolutional network-based prediction approaches and various attention mechanisms, which have been proved successful in vehicle traffic forecasting. In this paper, we cast the problem as a spatial-temporal sequence prediction task. We propose a novel deep learning network architecture, Adaptive Multi-receptive Field Spatial-Temporal Graph Convolutional Networks (AMF-STGCN), to model the traffic dynamics of mobile base stations. AMF-STGCN extends GCN by (1) jointly modeling the complex spatial-temporal dependencies in mobile networks, (2) applying attention mechanisms to capture various Receptive Fields of heterogeneous base stations, and (3) introducing an extra decoder based on a fully connected deep network to conquer the error propagation challenge with multi-step forecasting. Experiments on four real-world datasets from two different domains consistently show AMF-STGCN outperforms the state-of-the-art methods.


Variational Autoencoder for Semi-Supervised Text Classification

AAAI Conferences

Although semi-supervised variational autoencoder (SemiVAE) works in image classification task, it fails in text classification task if using vanilla LSTM as its decoder. From a perspective of reinforcement learning, it is verified that the decoder's capability to distinguish between different categorical labels is essential. Therefore, Semi-supervised Sequential Variational Autoencoder (SSVAE) is proposed, which increases the capability by feeding label into its decoder RNN at each time-step. Two specific decoder structures are investigated and both of them are verified to be effective. Besides, in order to reduce the computational complexity in training, a novel optimization method is proposed, which estimates the gradient of the unlabeled objective function by sampling, along with two variance reduction techniques. Experimental results on Large Movie Review Dataset (IMDB) and AG's News corpus show that the proposed approach significantly improves the classification accuracy compared with pure-supervised classifiers, and achieves competitive performance against previous advanced methods. State-of-the-art results can be obtained by integrating other pretraining-based methods.