Goto

Collaborating Authors

 Demiriz, Ayhan


DiscoVars: A New Data Analysis Perspective -- Application in Variable Selection for Clustering

arXiv.org Artificial Intelligence

We present a new data analysis perspective to determine variable importance regardless of the underlying learning task. Traditionally, variable selection is considered an important step in supervised learning for both classification and regression problems. The variable selection also becomes critical when costs associated with the data collection and storage are considerably high for cases like remote sensing. Therefore, we propose a new methodology to select important variables from the data by first creating dependency networks among all variables and then ranking them (i.e. nodes) by graph centrality measures. Selecting Top-$n$ variables according to preferred centrality measure will yield a strong candidate subset of variables for further learning tasks e.g. clustering. We present our tool as a Shiny app which is a user-friendly interface development environment. We also extend the user interface for two well-known unsupervised variable selection methods from literature for comparison reasons.


Semi-Supervised Support Vector Machines

Neural Information Processing Systems

We introduce a semi-supervised support vector machine (S3yM) method. Given a training set of labeled data and a working set of unlabeled data, S3YM constructs a support vector machine using both the training and working sets. We use S3 YM to solve the transduction problem using overall risk minimization (ORM) posed by Yapnik. The transduction problem is to estimate the value of a classification function at the given points in the working set. This contrasts with the standard inductive learning problem of estimating the classification function at all possible values and then using the fixed function to deduce the classes of the working set data.


Semi-Supervised Support Vector Machines

Neural Information Processing Systems

We introduce a semi-supervised support vector machine (S3yM) method. Given a training set of labeled data and a working set of unlabeled data, S3YM constructs a support vector machine using boththe training and working sets. We use S3 YM to solve the transduction problem using overall risk minimization (ORM) posed by Yapnik. The transduction problem is to estimate the value of a classification function at the given points in the working set. This contrasts with the standard inductive learning problem of estimating the classification function at all possible values and then using the fixed function to deduce the classes of the working set data.