Demelius, Lea
Establishing and Evaluating Trustworthy AI: Overview and Research Challenges
Kowald, Dominik, Scher, Sebastian, Pammer-Schindler, Viktoria, Müllner, Peter, Waxnegger, Kerstin, Demelius, Lea, Fessl, Angela, Toller, Maximilian, Estrada, Inti Gabriel Mendoza, Simic, Ilija, Sabol, Vedran, Truegler, Andreas, Veas, Eduardo, Kern, Roman, Nad, Tomislav, Kopeinik, Simone
However, some AI systems have yielded unexpected or undesirable outcomes or have been used in questionable manners. As a result, there has been a surge in public and academic discussions about aspects that AI systems must fulfill to be considered trustworthy. In this paper, we synthesize existing conceptualizations of trustworthy AI along six requirements: 1) human agency and oversight, 2) fairness and non-discrimination, 3) transparency and explainability, 4) robustness and accuracy, 5) privacy and security, and 6) accountability. For each one, we provide a definition, describe how it can be established and evaluated, and discuss requirement-specific research challenges. Finally, we conclude this analysis by identifying overarching research challenges across the requirements with respect to 1) interdisciplinary research, 2) conceptual clarity, 3) context-dependency, 4) dynamics in evolving systems, and 5) investigations in real-world contexts. Thus, this paper synthesizes and consolidates a wide-ranging and active discussion currently taking place in various academic sub-communities and public forums. It aims to serve as a reference for a broad audience and as a basis for future research directions.
Recent Advances of Differential Privacy in Centralized Deep Learning: A Systematic Survey
Demelius, Lea, Kern, Roman, Trügler, Andreas
Differential Privacy has become a widely popular method for data protection in machine learning, especially since it allows formulating strict mathematical privacy guarantees. This survey provides an overview of the state-of-the-art of differentially private centralized deep learning, thorough analyses of recent advances and open problems, as well as a discussion of potential future developments in the field. Based on a systematic literature review, the following topics are addressed: auditing and evaluation methods for private models, improvements of privacy-utility trade-offs, protection against a broad range of threats and attacks, differentially private generative models, and emerging application domains.