Goto

Collaborating Authors

 Delobelle, Pieter


ChocoLlama: Lessons Learned From Teaching Llamas Dutch

arXiv.org Artificial Intelligence

While Large Language Models (LLMs) have shown remarkable capabilities in natural language understanding and generation, their performance often lags in lower-resource, non-English languages due to biases in the training data. In this work, we explore strategies for adapting the primarily English LLMs (Llama-2 and Llama-3) to Dutch, a language spoken by 30 million people worldwide yet often underrepresented in LLM development. We collect 104GB of Dutch text ($32$B tokens) from various sources to first apply continued pretraining using low-rank adaptation (LoRA), complemented with Dutch posttraining strategies provided by prior work. For Llama-2, we consider using (i) the tokenizer of the original model, and (ii) training a new, Dutch-specific tokenizer combined with embedding reinitialization. We evaluate our adapted models, ChocoLlama-2, both on standard benchmarks and a novel Dutch benchmark, ChocoLlama-Bench. Our results demonstrate that LoRA can effectively scale for language adaptation, and that tokenizer modification with careful weight reinitialization can improve performance. Notably, Llama-3 was released during the course of this project and, upon evaluation, demonstrated superior Dutch capabilities compared to our Dutch-adapted versions of Llama-2. We hence apply the same adaptation technique to Llama-3, using its original tokenizer. While our adaptation methods enhanced Llama-2's Dutch capabilities, we found limited gains when applying the same techniques to Llama-3. This suggests that for ever improving, multilingual foundation models, language adaptation techniques may benefit more from focusing on language-specific posttraining rather than on continued pretraining. We hope this work contributes to the broader understanding of adapting LLMs to lower-resource languages, and to the development of Dutch LLMs in particular.


Whispering Experts: Neural Interventions for Toxicity Mitigation in Language Models

arXiv.org Artificial Intelligence

An important issue with Large Language Models (LLMs) is their undesired ability to generate toxic language. In this work, we show that the neurons responsible for toxicity can be determined by their power to discriminate toxic sentences, and that toxic language can be mitigated by reducing their activation levels proportionally to this power. We propose AUROC adaptation (AurA), an intervention that can be applied to any pre-trained LLM to mitigate toxicity. As the intervention is proportional to the ability of each neuron to discriminate toxic content, it is free of any model-dependent hyperparameters. We show that AurA can achieve up to $2.2 \times$ reduction in toxicity with only a $0.72$ perplexity increase. We also show that AurA is effective with models of different scale (from 1.5B to 40B parameters), and its effectiveness in mitigating toxic language, while preserving common-sense zero-shot abilities, holds across all scales. AurA can be combined with pre-prompting strategies, boosting its average mitigation potential from $1.28\times$ to $2.35\times$. Moreover, AurA can counteract adversarial pre-prompts that maliciously elicit toxic content, making it an effective method for deploying safer and less toxic models.


Tik-to-Tok: Translating Language Models One Token at a Time: An Embedding Initialization Strategy for Efficient Language Adaptation

arXiv.org Artificial Intelligence

Training monolingual language models for low and mid-resource languages is made challenging by limited and often inadequate pretraining data. In this study, we propose a novel model conversion strategy to address this issue, adapting high-resources monolingual language models to a new target language. By generalizing over a word translation dictionary encompassing both the source and target languages, we map tokens from the target tokenizer to semantically similar tokens from the source language tokenizer. This one-to-many token mapping improves tremendously the initialization of the embedding table for the target language. We conduct experiments to convert high-resource models to mid- and low-resource languages, namely Dutch and Frisian. These converted models achieve a new state-of-the-art performance on these languages across all sorts of downstream tasks. By reducing significantly the amount of data and time required for training state-of-the-art models, our novel model conversion strategy has the potential to benefit many languages worldwide.


How Far Can It Go?: On Intrinsic Gender Bias Mitigation for Text Classification

arXiv.org Artificial Intelligence

To mitigate gender bias in contextualized language models, different intrinsic mitigation strategies have been proposed, alongside many bias metrics. Considering that the end use of these language models is for downstream tasks like text classification, it is important to understand how these intrinsic bias mitigation strategies actually translate to fairness in downstream tasks and the extent of this. In this work, we design a probe to investigate the effects that some of the major intrinsic gender bias mitigation strategies have on downstream text classification tasks. We discover that instead of resolving gender bias, intrinsic mitigation techniques and metrics are able to hide it in such a way that significant gender information is retained in the embeddings. Furthermore, we show that each mitigation technique is able to hide the bias from some of the intrinsic bias measures but not all, and each intrinsic bias measure can be fooled by some mitigation techniques, but not all. We confirm experimentally, that none of the intrinsic mitigation techniques used without any other fairness intervention is able to consistently impact extrinsic bias. We recommend that intrinsic bias mitigation techniques should be combined with other fairness interventions for downstream tasks.


Dutch Humor Detection by Generating Negative Examples

arXiv.org Artificial Intelligence

Detecting if a text is humorous is a hard task to do computationally, as it usually requires linguistic and common sense insights. In machine learning, humor detection is usually modeled as a binary classification task, trained to predict if the given text is a joke or another type of text. Rather than using completely different non-humorous texts, we propose using text generation algorithms for imitating the original joke dataset to increase the difficulty for the learning algorithm. We constructed several different joke and non-joke datasets to test the humor detection abilities of different language technologies. In particular, we compare the humor detection capabilities of classic neural network approaches with the state-of-the-art Dutch language model RobBERT. In doing so, we create and compare the first Dutch humor detection systems. We found that while other language models perform well when the non-jokes came from completely different domains, RobBERT was the only one that was able to distinguish jokes from generated negative examples. This performance illustrates the usefulness of using text generation to create negative datasets for humor recognition, and also shows that transformer models are a large step forward in humor detection.


Ethical Adversaries: Towards Mitigating Unfairness with Adversarial Machine Learning

arXiv.org Artificial Intelligence

Machine learning is being integrated into a growing number of critical systems with far-reaching impacts on society. Unexpected behaviour and unfair decision processes are coming under increasing scrutiny due to this widespread use and its theoretical considerations. Individuals, as well as organisations, notice, test, and criticize unfair results to hold model designers and deployers accountable. We offer a framework that assists these groups in mitigating unfair representations stemming from the training datasets. Our framework relies on two inter-operating adversaries to improve fairness. First, a model is trained with the goal of preventing the guessing of protected attributes' values while limiting utility losses. This first step optimizes the model's parameters for fairness. Second, the framework leverages evasion attacks from adversarial machine learning to generate new examples that will be misclassified. These new examples are then used to retrain and improve the model in the first step. These two steps are iteratively applied until a significant improvement in fairness is obtained. We evaluated our framework on well-studied datasets in the fairness literature -- including COMPAS -- where it can surpass other approaches concerning demographic parity, equality of opportunity and also the model's utility. We also illustrate our findings on the subtle difficulties when mitigating unfairness and highlight how our framework can assist model designers.