Goto

Collaborating Authors

 Deligiannis, Nikos


Learned layered coding for Successive Refinement in the Wyner-Ziv Problem

arXiv.org Artificial Intelligence

We propose a data-driven approach to explicitly learn the progressive encoding of a continuous source, which is successively decoded with increasing levels of quality and with the aid of correlated side information. This setup refers to the successive refinement of the Wyner-Ziv coding problem. Assuming ideal Slepian-Wolf coding, our approach employs recurrent neural networks (RNNs) to learn layered encoders and decoders for the quadratic Gaussian case. The models are trained by minimizing a variational bound on the rate-distortion function of the successively refined Wyner-Ziv coding problem. We demonstrate that RNNs can explicitly retrieve layered binning solutions akin to scalable nested quantization. Moreover, the rate-distortion performance of the scheme is on par with the corresponding monolithic Wyner-Ziv coding approach and is close to the rate-distortion bound.


Entropy-Based Feature Extraction For Real-Time Semantic Segmentation

arXiv.org Artificial Intelligence

This paper introduces an efficient patch-based computational module, coined Entropy-based Patch Encoder (EPE) module, for resource-constrained semantic segmentation. The EPE module consists of three lightweight fully-convolutional encoders, each extracting features from image patches with a different amount of entropy. Patches with high entropy are being processed by the encoder with the largest number of parameters, patches with moderate entropy are processed by the encoder with a moderate number of parameters, and patches with low entropy are processed by the smallest encoder. The intuition behind the module is the following: as patches with high entropy contain more information, they need an encoder with more parameters, unlike low entropy patches, which can be processed using a small encoder. Consequently, processing part of the patches via the smaller encoder can significantly reduce the computational cost of the module. Experiments show that EPE can boost the performance of existing real-time semantic segmentation models with a slight increase in the computational cost. Specifically, EPE increases the mIOU performance of DFANet A by 0.9% with only 1.2% increase in the number of parameters and the mIOU performance of EDANet by 1% with 10% increase of the model parameters.


Gradient Variance Loss for Structure-Enhanced Image Super-Resolution

arXiv.org Artificial Intelligence

Recent success in the field of single image super-resolution (SISR) is achieved by optimizing deep convolutional neural networks (CNNs) in the image space with the L1 or L2 loss. However, when trained with these loss functions, models usually fail to recover sharp edges present in the high-resolution (HR) images for the reason that the model tends to give a statistical average of potential HR solutions. During our research, we observe that gradient maps of images generated by the models trained with the L1 or L2 loss have significantly lower variance than the gradient maps of the original high-resolution images. In this work, we propose to alleviate the above issue by introducing a structure-enhancing loss function, coined Gradient Variance (GV) loss, and generate textures with perceptual-pleasant details. Specifically, during the training of the model, we extract patches from the gradient maps of the target and generated output, calculate the variance of each patch and form variance maps for these two images. Further, we minimize the distance between the computed variance maps to enforce the model to produce high variance gradient maps that will lead to the generation of high-resolution images with sharper edges. Experimental results show that the GV loss can significantly improve both Structure Similarity (SSIM) and peak signal-to-noise ratio (PSNR) performance of existing image super-resolution (SR) deep learning models.


Bias Loss for Mobile Neural Networks

arXiv.org Artificial Intelligence

Compact convolutional neural networks (CNNs) have witnessed exceptional improvements in performance in recent years. However, they still fail to provide the same predictive power as CNNs with a large number of parameters. The diverse and even abundant features captured by the layers is an important characteristic of these successful CNNs. However, differences in this characteristic between large CNNs and their compact counterparts have rarely been investigated. In compact CNNs, due to the limited number of parameters, abundant features are unlikely to be obtained, and feature diversity becomes an essential characteristic. Diverse features present in the activation maps derived from a data point during model inference may indicate the presence of a set of unique descriptors necessary to distinguish between objects of different classes. In contrast, data points with low feature diversity may not provide a sufficient amount of unique descriptors to make a valid prediction; we refer to them as random predictions. Random predictions can negatively impact the optimization process and harm the final performance. This paper proposes addressing the problem raised by random predictions by reshaping the standard cross-entropy to make it biased toward data points with a limited number of unique descriptive features. Our novel Bias Loss focuses the training on a set of valuable data points and prevents the vast number of samples with poor learning features from misleading the optimization process. Furthermore, to show the importance of diversity, we present a family of SkipNet models whose architectures are brought to boost the number of unique descriptors in the last layers. Our Skipnet-M can achieve 1% higher classification accuracy than MobileNetV3 Large.


Learned Gradient Compression for Distributed Deep Learning

arXiv.org Artificial Intelligence

Training deep neural networks on large datasets containing high-dimensional data requires a large amount of computation. A solution to this problem is data-parallel distributed training, where a model is replicated into several computational nodes that have access to different chunks of the data. This approach, however, entails high communication rates and latency because of the computed gradients that need to be shared among nodes at every iteration. The problem becomes more pronounced in the case that there is wireless communication between the nodes (i.e. due to the limited network bandwidth). To address this problem, various compression methods have been proposed including sparsification, quantization, and entropy encoding of the gradients. Existing methods leverage the intra-node information redundancy, that is, they compress gradients at each node independently. In contrast, we advocate that the gradients across the nodes are correlated and propose methods to leverage this inter-node redundancy to improve compression efficiency. Depending on the node communication protocol (parameter server or ring-allreduce), we propose two instances of the LGC approach that we coin Learned Gradient Compression (LGC). Our methods exploit an autoencoder (i.e. trained during the first stages of the distributed training) to capture the common information that exists in the gradients of the distributed nodes. We have tested our LGC methods on the image classification and semantic segmentation tasks using different convolutional neural networks (ResNet50, ResNet101, PSPNet) and multiple datasets (ImageNet, Cifar10, CamVid). The ResNet101 model trained for image classification on Cifar10 achieved an accuracy of 93.57%, which is lower than the baseline distributed training with uncompressed gradients only by 0.18%.


Temporal Collaborative Filtering with Graph Convolutional Neural Networks

arXiv.org Artificial Intelligence

Temporal collaborative filtering (TCF) methods aim at modelling non-static aspects behind recommender systems, such as the dynamics in users' preferences and social trends around items. State-of-the-art TCF methods employ recurrent neural networks (RNNs) to model such aspects. These methods deploy matrix-factorization-based (MF-based) approaches to learn the user and item representations. Recently, graph-neural-network-based (GNN-based) approaches have shown improved performance in providing accurate recommendations over traditional MF-based approaches in non-temporal CF settings. Motivated by this, we propose a novel TCF method that leverages GNNs to learn user and item representations, and RNNs to model their temporal dynamics. A challenge with this method lies in the increased data sparsity, which negatively impacts obtaining meaningful quality representations with GNNs. To overcome this challenge, we train a GNN model at each time step using a set of observed interactions accumulated time-wise. Comprehensive experiments on real-world data show the improved performance obtained by our method over several state-of-the-art temporal and non-temporal CF models.


A Deep-Unfolded Reference-Based RPCA Network For Video Foreground-Background Separation

arXiv.org Machine Learning

Deep unfolded neural networks are designed by unrolling the iterations of optimization algorithms. They can be shown to achieve faster convergence and higher accuracy than their optimization counterparts. This paper proposes a new deep-unfolding-based network design for the problem of Robust Principal Component Analysis (RPCA) with application to video foreground-background separation. Unlike existing designs, our approach focuses on modeling the temporal correlation between the sparse representations of consecutive video frames. To this end, we perform the unfolding of an iterative algorithm for solving reweighted $\ell_1$-$\ell_1$ minimization; this unfolding leads to a different proximal operator (a.k.a. different activation function) adaptively learned per neuron. Experimentation using the moving MNIST dataset shows that the proposed network outperforms a recently proposed state-of-the-art RPCA network in the task of video foreground-background separation.


Graph Convolutional Neural Networks with Node Transition Probability-based Message Passing and DropNode Regularization

arXiv.org Machine Learning

Graph convolutional neural networks (GCNNs) have received much attention recently, owing to their capability in handling graph-structured data. Among the existing GCNNs, many methods can be viewed as instances of a neural message passing motif; features of nodes are passed around their neighbors, aggregated and transformed to produce better nodes' representations. Nevertheless, these methods seldom use node transition probabilities, a measure that has been found useful in exploring graphs. Furthermore, when the transition probabilities are used, their transition direction is often improperly considered in the feature aggregation step, resulting in an inefficient weighting scheme. In addition, although a great number of GCNN models with increasing level of complexity have been introduced, the GCNNs often suffer from over-fitting when being trained on small graphs. Another issue of the GCNNs is over-smoothing, which tends to make nodes' representations indistinguishable. This work presents a new method to improve the message passing process based on node transition probabilities by properly considering the transition direction, leading to a better weighting scheme in nodes' features aggregation compared to the existing counterpart. Moreover, we propose a novel regularization method termed DropNode to address the over-fitting and over-smoothing issues simultaneously. DropNode randomly discards part of a graph, thus it creates multiple deformed versions of the graph, leading to data augmentation regularization effect. Additionally, DropNode lessens the connectivity of the graph, mitigating the effect of over-smoothing in deep GCNNs. Extensive experiments on eight benchmark datasets for node and graph classification tasks demonstrate the effectiveness of the proposed methods in comparison with the state of the art.


Multimodal Deep Unfolding for Guided Image Super-Resolution

arXiv.org Artificial Intelligence

The reconstruction of a high resolution image given a low resolution observation is an ill-posed inverse problem in imaging. Deep learning methods rely on training data to learn an end-to-end mapping from a low-resolution input to a high-resolution output. Unlike existing deep multimodal models that do not incorporate domain knowledge about the problem, we propose a multimodal deep learning design that incorporates sparse priors and allows the effective integration of information from another image modality into the network architecture. Our solution relies on a novel deep unfolding operator, performing steps similar to an iterative algorithm for convolutional sparse coding with side information; therefore, the proposed neural network is interpretable by design. The deep unfolding architecture is used as a core component of a multimodal framework for guided image super-resolution. An alternative multimodal design is investigated by employing residual learning to improve the training efficiency. The presented multimodal approach is applied to super-resolution of near-infrared and multi-spectral images as well as depth upsampling using RGB images as side information. Experimental results show that our model outperforms state-of-the-art methods.


Deep Coupled-Representation Learning for Sparse Linear Inverse Problems with Side Information

arXiv.org Machine Learning

In linear inverse problems, the goal is to recover a target signal from undersampled, incomplete or noisy linear measurements. Typically, the recovery relies on complex numerical optimization methods; recent approaches perform an unfolding of a numerical algorithm into a neural network form, resulting in a substantial reduction of the computational complexity. In this paper, we consider the recovery of a target signal with the aid of a correlated signal, the so-called side information (SI), and propose a deep unfolding model that incorporates SI. The proposed model is used to learn coupled representations of correlated signals from different modalities, enabling the recovery of multimodal data at a low computational cost. As such, our work introduces the first deep unfolding method with SI, which actually comes from a different modality. We apply our model to reconstruct near-infrared images from undersampled measurements given RGB images as SI. Experimental results demonstrate the superior performance of the proposed framework against single-modal deep learning methods that do not use SI, multimodal deep learning designs, and optimization algorithms.