Goto

Collaborating Authors

 Dehaene, Stanislas


Disentanglement and Compositionality of Letter Identity and Letter Position in Variational Auto-Encoder Vision Models

arXiv.org Artificial Intelligence

Human readers can accurately count how many letters are in a word (e.g., 7 in ``buffalo''), remove a letter from a given position (e.g., ``bufflo'') or add a new one. The human brain of readers must have therefore learned to disentangle information related to the position of a letter and its identity. Such disentanglement is necessary for the compositional, unbounded, ability of humans to create and parse new strings, with any combination of letters appearing in any positions. Do modern deep neural models also possess this crucial compositional ability? Here, we tested whether neural models that achieve state-of-the-art on disentanglement of features in visual input can also disentangle letter position and letter identity when trained on images of written words. Specifically, we trained beta variational autoencoder ($\beta$-VAE) to reconstruct images of letter strings and evaluated their disentanglement performance using CompOrth - a new benchmark that we created for studying compositional learning and zero-shot generalization in visual models for orthography. The benchmark suggests a set of tests, of increasing complexity, to evaluate the degree of disentanglement between orthographic features of written words in deep neural models. Using CompOrth, we conducted a set of experiments to analyze the generalization ability of these models, in particular, to unseen word length and to unseen combinations of letter identities and letter positions. We found that while models effectively disentangle surface features, such as horizontal and vertical `retinal' locations of words within an image, they dramatically fail to disentangle letter position and letter identity and lack any notion of word length. Together, this study demonstrates the shortcomings of state-of-the-art $\beta$-VAE models compared to humans and proposes a new challenge and a corresponding benchmark to evaluate neural models.


Aligning individual brains with Fused Unbalanced Gromov-Wasserstein

arXiv.org Machine Learning

Individual brains vary in both anatomy and functional organization, even within a given species. Inter-individual variability is a major impediment when trying to draw generalizable conclusions from neuroimaging data collected on groups of subjects. Current co-registration procedures rely on limited data, and thus lead to very coarse inter-subject alignments. In this work, we present a novel method for inter-subject alignment based on Optimal Transport, denoted as Fused Unbalanced Gromov Wasserstein (FUGW). The method aligns cortical surfaces based on the similarity of their functional signatures in response to a variety of stimulation settings, while penalizing large deformations of individual topographic organization. We demonstrate that FUGW is well-suited for whole-brain landmark-free alignment. The unbalanced feature allows to deal with the fact that functional areas vary in size across subjects. Our results show that FUGW alignment significantly increases between-subject correlation of activity for independent functional data, and leads to more precise mapping at the group level.


Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

arXiv.org Artificial Intelligence

Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.